The influence of surface roughness and the presence of adhesion molecules in the culture medium were studied regarding cell adhesion, shape, and proliferation of osteoblast-like cells grown on two types of titanium disk. Type I disks were acid etched and type II disks were sandblasted and acid etched. Surface roughness was determined by contact profilometry and scanning electron microscopy. Chemical composition and oxide thickness of the superficial titanium layer were established with energy dispersive X-ray spectrometry, electron spectroscopy for chemical analysis and auger electron spectroscopy. Titanium release in the culture medium was assessed by inductively coupled plasma-optical emission spectrometry. Osteoblast-like cells (Saos-2) were cultured on both types of titanium disks (1) in standard conditions (DMEM culture medium supplemented with fetal calf serum), (FCS), (2) with the culture medium alone (DMEM alone), (3) in the presence of fibronectin or vitronectin (DMEM supplemented with fibronectin or vitronectin). Cultures were also performed in the presence of monoclonal anti-integrin (beta1, alphav) to test the cell adhesion molecules involved in the cell binding to the titanium surface. We found that sandblasting does not modify the chemical surface composition and that titanium represents only 5-6% (in the atom percentage) of surface elements. Release of titanium in the culture medium was found to increase from 24 to 72 hours. In the absence of FCS, fibronectin, or vitronectin, cells appeared scanty and packed in clusters. On the contrary, cells cultured in the presence of FCS, fibronectin, or vitronectin were flattened with large and thin cytoplasmic expansions. The addition of anti beta1 or alphav integrin subunit monoclonal antibody in the culture medium decreased adhesion and spreading of cells, particularly in the presence of fibronectin. Cell proliferation was significantly higher on culture plastic than on both types of disks, but was increased on rough but not on smooth surfaces. These results indicate that a high surface roughness and presence of fibronectin or vitronectin are critical elements for adhesion, spreading, and proliferation of cells on titanium surfaces.
The commonly accepted view that enteroinvasive bacteria enter cells of the intestinal epithelial lining through the apical surface can be challenged in the case of shigellosis. This study is based on in vitro experiments that showed that the invasion of human colonic Caco-2 cells by Shigella flexneri occurred through the basolateral pole of these cells. In these experiments, the few bacteria that interacted with the apical surface either bound to microvilli of the cell dome without causing detectable alteration or bound at the level of intercellular junctions at which they demonstrated a limited capacity for paracellular invasion, which permitted subsequent entry through the lateral domain of the cells. Treatment of Caco-2 cell monolayers with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), which disrupts intercellular junctions, greatly enhanced the rate of cell infection. These observations suggest a physiopathological paradox that may have important consequences for the understanding of the process of colonic invasion in vivo during shigellosis.
Whole cells of Mycobacterium avium, characterized by their negative response in the nine biochemical tests used for mycobacterial identification in our laboratory, turned positive for nitrate reductase, Tween-80 hydrolysis, beta-glucosidase, acid phosphatase, alkaline phosphatase, penicillinase, and trehalase after their wall portion was removed to yield spheroplasts. This suggested that the negative results in most of the biochemical procedures were caused by the exclusion mechanism at the wall level. Preliminary transmission and scanning electron microscopic studies showed differences at wall level between laboratory-maintained opaque, dome-shaped (SmD) and host-recycled smooth, transparent (SmT) colony type variants of M. avium and suggested the presence of an outer regularly structured layer in SmT variants. Comparative ultrastructural studies utilizing different polysaccharide coloration methods confirmed the presence of an outer polysaccharide layer in SmT variants which was probably related to their enhanced pathogenicity for experimental animals and drug resistance as compared to that of SmD variants. These findings are discussed with respect to multiple drug resistance, virulence, and gene expression of M. avium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.