Many engineering optimization problems are multi-objective, constrained and have uncertainty in their inputs. For such problems it is desirable to obtain solutions that are multi-objectively optimum and robust. A robust solution is one that as a result of input uncertainty has variations in its objective and constraint functions which are within an acceptable range. This paper presents a new approximation-assisted MORO (AA-MORO) technique with interval uncertainty. The technique is a significant improvement, in terms of computational effort, over previously reported MORO techniques. AA-MORO includes an upper-level problem that solves a multi-objective optimization problem whose feasible domain is iteratively restricted by constraint cuts determined by a lower-level optimization problem. AA-MORO also includes an online approximation wherein optimal solutions from the upper- and lower-level optimization problems are used to iteratively improve an approximation to the objective and constraint functions. Several examples are used to test the proposed technique. The test results show that the proposed AA-MORO reasonably approximates solutions obtained from previous MORO approaches while its computational effort, in terms of the number of function calls, is significantly reduced compared to the previous approaches.
Uncertainty in the input parameters to an engineering system may not only degrade the system’s performance but may also cause failure or infeasibility. This paper presents a new sensitivity analysis based approach called design improvement by sensitivity analysis (DISA). DISA analyzes the interval uncertainty of input parameters and using multi-objective optimization, determines an optimal combination of design improvements that will ensure a minimal variation in the objective functions of the system, while also ensuring the feasibility. The approach provides a designer with options for both uncertainty reduction and, more importantly, slight design adjustments. A two-stage sequential framework is used that can employ either the original analysis functions or their metamodels to greatly increase the computational efficiency of the approach. This new approach has been applied to two engineering examples of varying difficulty to demonstrate its applicability and effectiveness. The results produced by these examples show the ability of the approach to ensure the feasibility of a preexisting design under interval uncertainty by effectively adjusting available degrees of freedom in the system without the need to completely redesign the system.
A algorithm of interference free tool path generation for 5-axis NC machining with flat end cutter is presented. The approach includes: To obtain cutter location points from cutter contact points; interference pretreatment by convex box of NURBS surfaces and reducing check area; interference detection and tool-position correction based on mesh model while the interference problem is substituted with the relationship between tool and triangles. The algorithm is speed and reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.