[1] We evaluate the hypothesis that sea-level rise over the second half of the 20th century has led to detectable increases in Chesapeake Bay salinity. We exploit a simple, statistical model that predicts monthly mean salinity as a function of Susquehanna River flow in 23 segments of the main stem Chesapeake Bay. The residual (observed minus modeled) salinity exhibits statistically significant linear (p < 0.05) trends between 1949 and 2006 in 13 of the 23 segments of the bay. The salinity change estimated from the trend line over this period varies from À2.0 to 2.2, with 10 of the 13 cells showing positive changes. The mean and median salinity changes over all 23 cells are 0.47 and 0.72; over the 13 cells with significant trends they are 0.71 and 1.1. We ran a hydrodynamic model of the bay under present-day and reduced sea level conditions and found a bay-average salinity increase of about 0.5, which supports the hypothesis that the salinity residual trends have a significant component due to sea-level rise. Uncertainties remain, however, due to the spatial and temporal extent of historical salinity data and the infilling of the bay due to sedimentation. The salinity residuals also exhibit interannual variability, with peaks occurring at intervals of roughly 7 to 9 years, which are partially explained by Atlantic Shelf salinity, Potomac River flow and the meridional component of wind stress.
Microstructure and current velocity measurements were collected at a cross-channel transect in the James River under spring and neap tidal conditions in May 2010 to study cross-estuary variations in vertical mixing. Results showed that near-surface mixing was related to lateral circulation during the ebb phase of a tidal cycle, and that the linkage was somewhat similar from neap to spring tides. During neap tides, near-surface mixing was generated by the straining of lateral density gradients influenced by the advection of fresh, riverine water on the right side (looking seaward) of the transect. Spring tide results revealed similar findings on the right side of the cross section. However, on the left side, the straining by velocity shears acted in concert with density straining. Weak along-estuary velocities over the left shoal were connected to faster velocities in the channel via a clockwise lateral circulation (looking seaward). These results provided evidence that in the absence of direct wind forcing, near-surface vertical mixing can occur from mechanisms uncoupled from bottom friction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.