This paper addresses the multi-sensor fusion target tracking problem based on maximum mixture correntropy in non-Gaussian noise environments exclusively using Doppler measurements. As Doppler measurements are non-linear, a statistical linear regression model is constructed using the unscented transformation. Then, a centralized measurement model is developed, and the mixture correntropy is determined, which contains the high-order statistics of state prediction and the measurement error caused by noise. Then, a robust fusion filter is proposed by maximizing the mixture-correntropy-based cost. To improve numerical stability, the information filter and corresponding square root version are also derived. Furthermore, the performance of the proposed algorithm is analyzed, and the selection of the kernel width is discussed. Experiments are performed using simulated data and automatic driving software. The results show that the estimation performance of the proposed algorithm is better with respect to outliers and mixture Gaussian noise than that of traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.