BackgroundThe aim of this investigator-initiated trial is to evaluate the safety and efficacy of the novel Luminor® paclitaxel-coated drug-eluting balloon (DEB) catheter (iVascular, S.L.U., Barcelona, Spain) in inhibiting restenosis and in ensuring long-term vascular patency.Methods/designThis is a multicenter randomized controlled trial to evaluate the Luminor® paclitaxel-coated DEB catheter for stenotic or occlusive lesions (length ≤15 cm) in the superficial femoral artery (SFA) and the popliteal artery (PA) up to the P1 segment compared to the noncoated, plain old balloon angioplasty (POBA) catheter. In total 172 subjects will be treated with either the DEB catheter or the POBA catheter in 11 German study centers in a 1:1 randomization study design. The primary endpoint is late lumen loss (LLL) at 6 months. Secondary endpoints are patency rate, target lesion/vessel revascularization, quality of life (assessed with the Walking Impairment Questionnaire (WIQ) and the EQ-5D), change of Rutherford stage and ankle-brachial index, major and minor amputation rate at the index limb, number of dropouts and all-cause mortality.DiscussionEffPac represents a randomized controlled trial that will provide evidence on the effectiveness of the Luminor® paclitaxel-coated DEB catheter for the reduction of restenosis compared to the POBA catheter for the SFA and the PA. The results of EffPac will allow direct comparison to other already-completed RCTs applying paclitaxel-coated DEBs from different manufacturers with different coating technologies in the same target vessel.Trial registrationClinicalTrials.gov Identifier: NCT02540018, registered on 17 August 2015.Protocol version: CIP Version Final04, 11 February 2016.EUDAMED No: CIV-15-03-013204.
Despite considerable progress, pharmacological therapies have not provided a complete solution for common cardiovascular problems, including recurrent thrombosis, restenosis, and vein graft deterioration. Optimal drug dosage, reproducing plasma concentrations achieved in animal studies establishing proof-of-principle, would often be too toxic to administer. Local gene therapy aims at overexpressing proteins that regulate the cell cycle of vascular smooth muscle cells, inhibit vascular smooth muscle cell migration, endow the endothelium with enhanced vasoprotective properties. Alternatively, some approaches tend to suppress gene expression of proteins believed to promote vascular smooth muscle cell proliferation and migration. In sharp contrast to drug treatments, local gene therapy limits expression of the beneficial agent to the injured vascular site, where it can extend the presence of this agent to weeks and, with some gene vectors, to many months. This review summarizes and discusses antithrombotic gene therapy approaches for the prevention of restenosis and late thrombosis after catheter-based revascularizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.