The activity of the major isoform of porcine pancreatic phospholipase A2 (PLA2), designated B-PLA2, against micellar substrates is inhibited by heparin. Inhibition is a consequence of binding of the enzyme to heparin, documented by a heparin-induced alteration in the intrinsic fluorescence of B-PLA2 and in the 8-anilino-1-naphthalene sulfonate fluorescence and by the enhanced rate of chemical modification of the active site residue His-48. As a consequence of heparin binding, the conformation of B-PLA2 at the active site and at the amino-terminus is altered, and the enzyme does not bind to phospholipid micelles. In spite of the heparin-induced conformational changes, B-PLA2 retains its ability to catalyze the hydrolysis of monomeric phospholipid. Other glycosaminoglycans can bind to and inhibit the activity of B-PLA2 toward organized phospholipids, but none tested is as effective as heparin. An isoform of the pancreatic enzyme, designated UB-PLA2 and which corresponds to iso-pig PLA2, does not bind to nor is its catalytic activity influenced by heparin. A peptide corresponding to the amino-terminal 26 residues of B-PLA2 can rescue PLA2 from heparin inhibition. A similar peptide corresponding to the amino-terminus of UB-PLA2 has no effect on heparin inhibition. A model for the inhibition of B-PLA2 by heparin is proposed in which the catalytically significant effect of heparin is to interact directly with the amino-terminus of B-PLA2, the interfacial recognition site, to prevent the enzyme from binding to micellar substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.