We demonstrate a novel method for electronically detecting and quantifying protein biomarkers using microfluidic impedance cytometry. Our biosensor, which consists of gold electrodes micro-fabricated in a microchannel, detects the differences between bead aggregates of varying sizes in a micro-pore sandwiched between two micro channels. We perform a sandwich immunoassay, where the complementary antibody pairs are immobilized on two different bead types, and the presence of antigen results in bead aggregation, the amount of which depends on antigen quantity. When single beads or bead aggregates pass through the impedance sensor, differences in impedance change are detected. In this manuscript, we perform a comprehensive theoretical study on the limits imposed on sensitivity of this technique due to electronic noise and also mass transfer and reaction limits. We also experimentally characterize the performance of this technique by validating the technique on an IgG detection assay. A detection limit at the picoMolar level is demonstrated, thus comparable in sensitivity to a sandwich ELISA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.