Lunar pyroclastic glass beads have been a significant source of information for studying volcanic activity on the Moon (Elkins-Tanton et al., 2003a). Pyroclastic material has been found on the surface of the Moon in many of the returned lunar soil samples (
<p>Quantifying the volatile content of the lunar interior is valuable for understanding the formation, thermal evolution, and magmatic evolution of the Earth and Moon. Petrological modelling and geochemical measurements have been used to study the volatile composition of the lunar interior. Improvements to analytical instruments have facilitated more precise measurements of the volatile content of lunar samples and meteorites, however, several problems remain with these measurements, hence, the volatile content of lunar magmas has yet to be constrained with certainty. We propose a volcanological approach for inferring the volatile contents of different lunar magmas.</p><p>&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; A terrestrial magma ascent model has been modified for lunar applications. Numerous parameters were adjusted for lunar conditions, including: magma major element composition, from low-Ti (green and yellow glasses) to high-Ti (orange, red, and black glasses); H<sub>2</sub>O content; CO content; gravity; and pressure. The model calculated values for gas exsolution, viscosity, mass flow rate, and several other ascent processes, from a depth of 10 km to the surface. Using these results, we will assess the effect of varying magmatic volatile content on lunar magma ascent processes. We will also compare and contrast our results with existing models for lunar magma ascent, as well as models for magma ascent on other planetary bodies. Future work will involve modelling eruptions, using results from the magma ascent model, and verifying the results of the models using images and digital elevation models of the lunar surface.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.