Work at high altitude in shifts exposes humans to a new form of chronic intermittent hypoxia, with still unknown health consequences. We have established a rat model resembling this situation, which develops a milder form of right ventricular hypertrophy and pulmonary artery remodelling compared to continuous chronic exposure. We aimed to compare the alterations in pulmonary artery nitric oxide (NO) availability induced by these forms of hypoxia and the mechanisms implicated. Rats were exposed for 46 days to normoxia or hypobaric hypoxia, either continuous (CH) or intermittent (2 day shifts, CIH2x2), and assessed: NO and superoxide anion availability (fluorescent indicators and confocal microscopy); expression of phosphorylated endothelial NO synthase (eNOS), NADPH-oxidase (p22phox), and 3-nitrotyrosine (western blotting); and NADPH-oxidase location (immunohistochemistry). Compared to normoxia, (1) NO availability was reduced and superoxide anion was increased in both hypoxic groups, with a larger effect in CH, (2) eNOS expression was only reduced in CH, (3) NADPH-oxidase was similarly increased in both hypoxic groups, and (4) 3-nitrotyrosine was increased to a larger extent in CH. In conclusion, intermittent hypoxia reduces NO availability through superoxide anion destruction, without reducing its synthesis, while continuous hypoxia affects both, producing larger nitrosative damage which could be related to the more severe cardiovascular alterations.
Long-term chronic intermittent exposure to altitude hypoxia is a labor phenomenon requiring further research. Using a rat model, we examined whether this type of exposure differed from chronic exposure in terms of pulmonary artery remodeling and other features. Rats were subjected to chronic hypoxia (CH, n = 9) and long-term intermittent hypoxia (CIH2x2; 2 days of hypoxia/2 days of normoxia, n = 10) in a chamber (428 Torr, 4,600 m of altitude) for 46 days and compared to rats under normoxia (NX, n = 10). Body weight, hematocrit, and right ventricle ratio were measured. Pulmonary artery remodeling was assessed using confocal microscopy of tissues stained with a nuclear dye (DAPI) and CD11b antibody. Both hypoxic conditions exhibited increased hematocrit and hypertrophy of the right ventricle, tunica adventitia, and tunica media, with no changes in lumen size. The medial hypertrophy area (larger in CH) depicted a significant increase in smooth muscle cell number. Additionally, CIH2x2 increased the adventitial hypertrophy area, with an increased cellularity and a larger prevalence of clustered inflammatory cells. In conclusion, CIH2x2 elicits milder effects on pulmonary artery medial layer muscularization and subsequent right ventricular hypertrophy than CH. However, CIH2x2 induces greater and characteristic alterations of the adventitial layer.
One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right ventricular hypertrophy (RVH). One particular type of exposure is long-term chronic intermittent hypobaric hypoxia (CIH); the molecular alterations in RVH in this particular condition are less known. Studies show an important role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-induced oxidative stress and protein kinase activation in different models of cardiac hypertrophy. The aim was to determine the oxidative level, NADPH oxidase expression and MAPK activation in rats with RVH induced by CIH. Male Wistar rats were randomly subjected to CIH (2 days hypoxia/2 days normoxia; n = 10) and normoxia (NX; n = 10) for 30 days. Hypoxia was simulated with a hypobaric chamber. Measurements in the RV included the following: hypertrophy, Nox2, Nox4, p22phox, LOX-1 and HIF-1α expression, lipid peroxidation and H2O2 concentration, and p38α and Akt activation. All CIH rats developed RVH and showed an upregulation of LOX-1, Nox2 and p22phox and an increase in lipid peroxidation, HIF-1α stabilization and p38α activation. Rats with long-term CIH-induced RVH clearly showed Nox2, p22phox and LOX-1 upregulation and increased lipid peroxidation, HIF-1α stabilization and p38α activation. Therefore, these molecules may be considered new targets in CIH-induced RVH.
Fecal 17beta-estradiol and progestogens excretion was monitored in adult, female cheetahs (Acinonyx jubatus; n = 2), ZGG-12301 (born 3 April 1993), gonadotrophin treated and ZGT-3301, (born 19 August 1993), nontreated, for 120 days using commercially available plate enzyme immunoassay kits prepared for human serum or plasma. There were significant differences (P < 0.001) between baseline and peak concentrations of both hormone measures. Female ZGG-12301, which conceived, but this pregnancy resulted in an unobserved spontaneous abortion, showed no significant difference (P > 0.05) between baseline and gestation 17beta-estradiol values; fecal 17beta-estradiol excretion during pregnancy was statistically different (P < 0.001) from excretion during the nonpregnancy period. Baseline progestogen concentrations were different from pregnancy (P < 0.001) and postovulatory (P < 0.01) concentrations, and progestogen concentrations during pregnancy period were different (P < 0.001) from postovulatory concentrations. In the nontreated cheetah (ZGT-3301), basal and increased progestogen concentrations were statistically different (P < 0.01). On the basis of 17beta-estradiol excretory patterns, duration of the estrous cycle (x +/- SEM) was 13.2 +/- 2.2 days. These results suggest that the enzyme-linked immunosorbent methods reported in this study were capable of quantifying reproductive hormones in fecal extracts of cheetahs and could be a practical alternative to other enzyme-linked immunosorbent assays which require more complex procedures.
Global Longitudinal Strain (GLS) is a useful tool to follow-up heart transplant (HT) recipients. Important inter-vendor variability of GLS measurements has been reported in healthy subjects and different conditions, but there is still limited evidence among HT patients. We assessed the reliability and validity of GLS using two vendors (General Electric and Philips) in a group of consecutive and stable adult HT recipients. Patients underwent two concurrent GLS analyses during their echocardiographic follow-up. We evaluated GLS inter-vendor reliability using Bland-Altman's limits of agreement (LOA) plots, computing its coverage probability (CP) and the intraclass correlation coe cient (ICC). Validity was assessed though receiver operating characteristics (ROC) curves, predictive values, sensitivity and speci city of GLS for each vendor to detect a normal left ventricle function. 78 pairs of GLS studies in 53 stable HT patients were analyzed. We observed a modest inter-vendor reliability with a broad LOA (less than 50% of values falling out our CP of 2% and an ICC of 0.49). ROC analyses (areas under the curve of 0.824 Vs. 0.631, p<0.05) and diagnosis test indices (Sensitivity of 0.73 Vs. 0.64; and Speci city of 0.79 Vs. 0.50) favored GE over Philips. Inter-vendor variability for GLS analysis exceeded clinically acceptable limits in HT recipients. GLS from GE software seemed to show higher validity as compared to Philips'. The present study provides evidence to consider caution for the interpretation of GLS for clinical management in the follow-up of HT patients, especially when GLS is measured by different vendors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.