VcINDY, the sodium-dependent dicarboxylate transporter from Vibrio cholerae, is responsible for C4- and C5- carboxylate uptake into cells. The molecular mechanism of how VcINDY physically moves substrates across the membrane, and does so in an energetically efficient manner, is unclear. Here, we use single-molecule fluorescence resonance energy transfer experiments to directly observe the individual mechanistic steps that VcINDY takes to translocate substrates across a lipid bilayer, and then test key predictions of transport cycle mechanistic models. Our data provide the first direct evidence that VcINDY undergoes stochastic, elevator-type conformational motions that enable substrate translocation. Kinetic analysis suggests that the two protomers of the VcINDY homodimer undergo those motions in a non-cooperative manner, and thus catalyze two independent transport reactions. The relative substrate independence of those motions provides evidence that the VcINDY transport cycle maintains strict co-substrate coupling using a cooperative binding mechanism. Finally, thermodynamic modeling provides insight into how such a cooperative binding mechanism provides a generalized approach to optimizing transport for many secondary active transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.