The toxicokinetics and biotransformation of 2,2',3',4,4',5,5'-heptachlorobiphenyl, as well as its influence on the activity of microsomal and cytosolic enzymes and on the porphyrin pathway in the liver were studied in female rats following oral treatment with 7 mg/kg every other day for 3 months. One day after cessation of treatment the concentration of the compound in liver, spleen, CNS and blood was 100-500 times and in the trachea it was only 5 times less than in the adipose tissue. The daily excretion with the feces and urine amounted to 35 and 1.5 micrograms, respectively. In both excreta, heptachlorobiphenylol was identified as a metabolite. The biotransformation rate was estimated to be about 5%. Investigations of the liver revealed increases in the relative liver weight, total cytochrome P-450 content, O-deethylation of 7-ethoxycoumarin and in the activity of glutathione S-transferases. Disturbances of the hepatic porphyrin pathway were not detected. Only at the end of a post-dosing period of 12 months did the hepatic uroporphyrinogen decarboxylase show diminished activity. Only one of these animals with diminished enzyme activity showed drastically elevated porphyrins. In these animals, the fecal and urinary porphyrins did not differ from controls. At no time did heptachlorobiphenyl influence the urinary excretion of delta-aminolevulinic acid and porphobilinogen. The results indicate 1) that this congener shows expected toxicokinetics with the exception of being accumulated in the trachea and 2) that this congener induces disturbances of the hepatic porphyrin pathway several months after cessation of treatment.
Exposure of rats to HCB caused a dose-dependent depletion of GSH. Chlorophenolic and sulfur-containing metabolites of HCB incubated with GSH-free rat liver cytosolic protein drastically diminished the UROD activity. In addition, HCB also exhibited inhibitory potency. The most effective compounds studied were TCH and its oxidation product, chloranil. Incubation of liver cytosolic protein and of GSH with HCB and its metabolites yielded results that suggested interaction between the compounds and cell constituents--an interaction that may cause inhibition of the hepatic UROD activity in the HCB-exposed organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.