Background and Purpose-We investigated the sensitivity and reliability of MRI susceptibility-weighted imaging (SWI) compared with routine MRI T2*-weighted gradient-recalled echo (GRE) for cerebral microbleed (CMB) detection. Methods-We used data from a prospective study of cerebral amyloid angiopathy (n=9; mean age, 71±8.3) and healthy non-cerebral amyloid angiopathy controls (n=22; mean age, 68±6.3). Three raters (labeled 1, 2, and 3) independently interpreted the GRE and SWI sequences (using the phase-filtered magnitude image) blinded to clinical information. Results-In 9 cerebral amyloid angiopathy cases, the raters identified 1146 total CMBs on GRE and 1432 CMBs on SWI.In 22 healthy control subjects, the raters identified ≥1 CMBs in 6/22 on GRE (total 9 CMBs) and 5/22 on SWI (total 19 CMBs). Among cerebral amyloid angiopathy cases, the reliability between raters for CMB counts was good for SWI (intraclass correlation coefficient, 0.87) but only moderate for GRE (intraclass correlation coefficient, 0.52). In controls, agreement on the presence or absence of CMBs in controls was moderate to good on both SWI (κ coefficient ranged from 0.57 to 0.74 across the 3 combinations of rater pairs) and GRE (κ range, 0.31 to 0.70). A review of 114 hypointensities identified as possible CMBs indicated that increased detection and reliability on SWI was related to both increased contrast and higher resolution, allowing better discrimination of CMBs from the background and better anatomic differentiation from pial vessels. Conclusions-SWI confers greater reliability as well as greater sensitivity for CMB detection compared with GRE, and should be the preferred sequence for quantifying CMB counts. (Stroke. 2013;44:2782-2786.)
MR imaging at very high field (3.0 T) is a significant new clinical tool in the modern neuroradiological armamentarium. In this report, we summarize our 40-month experience in performing clinical neuroradiological examinations at 3.0 T and review the relevant technical issues. We report on these issues and, where appropriate, their solutions. Issues examined include: increased SNR, larger chemical shifts, additional problems associated with installation of these scanners, challenges in designing and obtaining appropriate clinical imaging coils, greater acoustic noise, increased power deposition, changes in relaxation rates and susceptibility effects, and issues surrounding the safety and compatibility of implanted devices. Some of the these technical factors are advantageous (eg, increased signal-to-noise ratio), some are detrimental (eg, installation, coil design and development, acoustic noise, power deposition, device compatibility, and safety), and a few have both benefits and disadvantages (eg, changes in relaxation, chemical shift, and susceptibility). Fortunately solutions have been developed or are currently under development, by us and by others, for nearly all of these challenges. A short series of 1.5 T and 3.0 T patient images are also presented to illustrate the potential diagnostic benefits of scanning at higher field strengths. In summary, by paying appropriate attention to the discussed technical issues, high-quality neuro-imaging of patients is possible at 3.0 T.
Background and Purpose-Definitions for chronic lacunar infarcts vary. Recent retrospective studies suggest that many acute lacunar strokes do not develop a cavitated appearance. We determined the characteristics of acute lacunar infarcts on follow-up MRI in consecutive patients participating in prospective research studies. Methods-Patients with acute lacunar infarction on diffusion-weighted imaging were selected from 3 prospective cohort studies of minor stroke imaged within Ͻ24 hours of onset. ). Evidence of cavitation on MRI was rated separately on fluid-attenuated inversion recovery, T1, and T2 sequences by 2 independent study physicians; discrepant readings were resolved by consensus. Results-Probable or definite cavitation on any sequence was more common at 90 days compared with 30 days (PՅ0.001 for all sequences). At 90 days, evidence of cavitation was seen on at least 1 sequence in 33 of 34 patients (97%). The T1-weighted sequence was most sensitive to the presence of cavitation (94% at 90 days). By contrast, the fluid-attenuated inversion recovery sequence frequently failed to show evidence of cavitation in the brain stem or thalamus (only 10 of 18 [56%] showed cavitation). Conclusions-MRI scanning at 90 days with T1-weighted imaging reveals evidence of cavitation in nearly all cases of acute lacunar infarction. By contrast, reliance on fluid-attenuated inversion recovery alone will miss many cavitated lesions in the thalamus and brain stem. These factors should be taken into account in the development of standardized criteria for lacunar infarction on MRI. (Stroke. 2012;43:1837-1842.)
Magnetic resonance imaging allows numerous k-space sampling schemes such as cartesian, polar, spherical, and other non-rectilinear trajectories. Non-rectilinear MR acquisitions permit fast scan times and can suppress motion artifacts. Still, these sampling schemes may adversely affect the image characteristics due to aliasing. Here, the Fourier aliasing effects of uniform polar sampling, i.e., equally spaced radial and azimuthal samples, are explained from the principal point spread function (PSF). The principal PSF is determined by assuming equally spaced concentric ring samples in k-space. The radial effects such as replication, smearing, truncation artifacts, and sampling requirements, are characterized based on the PSF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.