For the practical and functional reasons the investigation of the thermal decomposition process is of an essential meaning in relation to the thermal stabilisation of materials and obtaining for them the desired thermal properties. On the other side, thermal tests are carried out in order to identify degradation mechanisms, which is important in the environment protection context, including materials reuse. The cycle of investigations in which thermal TG-DTA methods were applied as supplementary ones for the works on the optimisation of the thermal reclamation process is presented in the hereby paper. The thermal reclamation process as a utilisation method of spent moulding and core sands is more costly than other reclamation methods, but in the majority of cases it simultaneously provides the best cleaning of mineral matrices from organic binders. Thus, the application of the thermal analysis methods (TG-DTA), by determining the temperature range within which a degradation followed by a destruction of bounded organic binders in moulding sands, can contribute to the optimisation of the thermal reclamation process and to the limiting its realisation costs.Keywords: thermal reclamation, organic binders, spent sands, ignition losses, thermal analysis TG-DTA Ze względów praktycznych i użytkowych zbadanie procesu degradacji termicznej ma podstawowe znaczenie w odniesieniu do problemu procesu stabilizowania termicznego materiałów i otrzymywania dla nich pożądanych właściwości termicznych. Z drugiej strony badania termiczne prowadzi się w celu rozpoznania mechanizmów ich degradacji, co ma też znaczenie w kontekście ochrony środowiska, w tym ich powtórnego wykorzystania materiałowego. W publikacji przedstawiono cykl badań, w którym zastosowano metody termiczne (TG-DTA) w uzupełnieniu do prowadzonych prac nad optymalizacją procesu regeneracji termicznej. Proces regeneracji termicznej jako sposób utylizacji zużytych mas formierskich i rdzeniowych w stosunku do innych rodzajów regeneracji zużytych mas jest bardziej kosztowny, ale jednocześnie dający w większości przypadków najlepsze oczyszczenie osnowy mineralnej ze spoiw organicznych. Stąd zastosowanie metod analizy termicznej (TG-DTA), poprzez określenie zakresu temperatury, w którym dochodzi do degradacji, a następnie destrukcji związanych spoiw organicznych w masie, może przyczynić się do optymalizacji procesu regeneracji termicznej i zmniejszenia kosztów jego realizacji.
This article presents the results of experiments related to the process of replacement of the currently used furfuryl resin molding sand technology with a new alkali-phenolic technology. The new binder is characterized by a set of technological advantages and is considered more ecological compared to the furfuryl resin. However, the molding sand produced on the basis of the alkali-phenolic resin features lower strength compared to the sands containing furfuryl resin. This article presents a comparative study of sands made using various alkali-phenolic binders, aimed at the selection of a resin with strength parameters and other features that are both desirable and useful for new technology applied in a foundry.
The results of investigations concerning the influence of the applied sand matrix (fresh sand, reclaim) on the properties of moulding sands used for production of large dimensional castings (ingot moulds, ladles), are presented in the hereby paper. The performed investigations were aimed at determining the influence of various reclamation methods of spent moulding sands on the quality of the obtained reclaimed material. Moulding sands were prepared on the fresh quartz matrix as well as on sand matrices obtained after various reclamation methods. The selected moulding sand parameters were tested (strength, permeability, grindability, ignition losses, pH reactions). It can be stated, on the basis of the performed investigations, that the kind of the applied moulding sand matrix is of an essential meaning from the point of view of creating conditions minimising formation of large amounts of gases and their directional migration in a casting mould.
The aim of the study was to analyze the crystallization kinetics of the Mg72Zn28 metallic glass alloy. The crystallization kinetics of Mg72Zn28 metallic glass were investigated by differential scanning calorimetry and X-ray diffraction. The phases formed during the crystallization process were identified as α-Mg and complex Mg12Zn13 phases. Activation energies for the glass transition temperature, crystallization onset, and peak were calculated based on the Kissinger model. The activation energy calculated from the Kissinger model was Eg = 176.91, Ex = 124.26, Ep1 = 117.49, and Ep2 = 114.48 kJ mol−1, respectively.
The results of investigations of spent moulding sands taken from the mould in which the metal core cooling system -to increase the cooling rate of the ladle casting -was applied, are presented in the hereby paper. The changes of the spent moulding sand at the casting external side being the result of degradation and destruction processes of organic binder, were analysed in this publication. Since the reclaimed material, obtained as a result of the mechanical reclamation of spent sands of the same type, is used as a grain matrix of the moulding sand, the amount of a binder left from the previous technological cycle is essential for the sound castings production. On the bases of investigations of the thermal analysis, ignition losses, dusts contents and pH values of the samples taken from the spent sand the conditions under which the process of gases displacing in the casting mould was realised as well as factors limiting the efficient mould degassing -were considered in this study. The possible reason of a periodical occurrence of an increased number of casting defects due to changing gas volume emission, being the reason of the realised technological process, was indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.