This Review aims to integrate the most recent and pertinent data available on the (bio)degradability and toxicity of ionic liquids for global and critical analysis and on the conscious use of these compounds on a large scale thereafter. The integrated data will enable focus on the recognition of toxicophores and on the way the community has been dealing with them, with the aim to obtain greener and safer ionic liquids. Also, an update of the most recent biotic and abiotic methods developed to overcome some of these challenging issues will be presented. The review structure aims to present a potential sequence of events that can occur upon discharging ionic liquids into the environment and the potential long-term consequences.
Mesoporous silica nanoparticles (MSNs) exhibit the typical characteristics of inorganic materials that make them promising drug delivery carriers for cancer therapy. Their structural properties allow the targeted delivery of chemotherapeutic drugs to enhance drug efficacy and reduce adverse effects. The functionalization of MSNs with targeting ligands to a specific tissue/cell and stimuli‐responsive capping materials to seal drugs inside the MSNs pores are widely studied for biomedical and pharmaceutical applications. Furthermore, multiple stimuli‐responsive MSN‐based drug delivery systems are developed to enhance the delivery of anticancer drugs to their specific target and thereby improve the release of the drugs at the intended site. In addition, several toxicity studies are conducted to evaluate the biosafety and biocompatibility of MSNs. Although MSNs present reduced toxicity compared to colloidal silica, they can induce cytotoxicity associated with oxidative stress by increased reactive oxygen species production and decreased glutathione levels that can ultimately lead to cell death. However, different modifications to control morphology and surface composition can be applied to overcome the biocompatibility concerns. In this review, a comprehensive overview of the controlled synthesis, functionalization, targeting and biocompatibility of MSNs, as well as their biomedical application as a chemotherapeutic delivery system is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.