Abstract. Continuous aerosol measurements have been performed at the high-alpine site Jungfraujoch (3450 m above sea level) since 1988 by means of an epiphaniometer. The instrument, which determines the Fuchs surface area of the aerosol particles, was operated with a time resolution of 30 min. High correlation coefficients (r > 0.8) were found between the epiphaniometer signal and other aerosol parameters, which could be attributed to a rather constant size distribution of the Jungfraujoch aerosol in the accumulation range (0.1 < d < 1 /.tm). Well-defined diurnal variations with a peak in the late afternoon were observed on many days during summer, which was not the case during winter. Comparison with black carbon and radon daughter measurements revealed that these diurnal variations are due to vertical transport processes. A statistical analysis showed that the fraction of days with a well-defined diurnal pattern increased with decreasing stability of the atmosphere; however, late afternoon peaks also occurred during days when the potential temperature profile indicated a stable atmosphere. First simulations with ALPTHERM, a new convection model which takes topography into account, were able to explain the observed aerosol patterns. This indicates that slope winds over a certain catchment area are responsible for the transport to this highelevation site. The distinct seasonal variation with summer values, which are about a factor of 10 higher than winter values, could therefore be attributed to seasonally varying transport processes, due to the seasonal variation of radiation. The data show that even sites at very high elevation cannot be assumed to be in the free troposphere all the time.
Atmospheric transport processes, relevant to high Alpine sites, were deduced from 2 sets of aerosol records: a 9‐year record from the Jungfraujoch (3454 m) on the northern side of the Swiss Alps and a 2.5‐year record from Colle Gnifetti (4452 m) on the southern side. A classification scheme for synoptic weather types was applied to separate the aerosol data into groups corresponding to different atmospheric transport conditions. For both sites, vertical aerosol transport by thermally driven convection, acting between late spring and late summer, was found to be the dominant transport process. In summer, the thermally driven aerosol transport to both sites caused an increase of the seasonally averaged aerosol concentration between 0800 and 1800 local standard time by a factor of two. Under anticyclonic conditions, when subsidence on a synoptic scale is present, the thermally driven aerosol transport is most pronounced. Therefore, the aerosol determining thermal transport takes place within a synoptic scale vertical motion of opposite direction. Under cyclonic conditions, when lifting on a synoptic scale is present, the thermally driven aerosol transport is nearly absent. In winter, thermally driven convection does not contribute to the aerosol concentrations at both sites. Nevertheless, also in winter statistically significant differences in aerosol concentration were found between cyclonic and anticyclonic weather conditions, which can be attributed to the vertical transport acting on the synoptic scale. These differences in aerosol concentration were small compared to the corresponding differences in summer. Within the weather types, which are dominated by horizontal advection in the Alpine region, the aerosol concentrations are more diffcult to interpret with respect to the effective transport process.
Abstract. During summer 1997, speciated reactive nitrogen (NO, NO2, peroxyacetyl nitrate (PAN), HNO3, and particulate nitrate) was measured in conjunction with total reactive nitrogen (NOv) at the high-alpine research station Jungfraujoch (JFJ), 3580 m above sea level (asl). The individually measured NO v components averaged to 82% of total NO v . PAN was the most abundant reactive nitrogen compound and composed on average 36% of NOv, followed by NOx (22%), particulate nitrate (17%), and HNO 3 (7%). The NOx/NOy ratio averaged 0.25, but significantly lower values (0.15-0.20) were observed in the presence of high NO v mixing ratios. A classification of the data by synoptic weather conditions indicated that thermally driven vertical transport has a strong impact on the mixing ratios measured at the JFJ during summer. A strong diurnal cycle with maximum mixing ratios in the late afternoon was observed for convective days with north-westerly advection at 500 hPa. In contrast, during a period of convective days with a wind speed below 7.5 m s -• at 500 hPa, no obvious diurnal cycle was observed. Under these meteorological conditions the convective boundary layer can be significantly higher over the Alps (i.e., around 4 km asl) than over the surrounding lowlands. Subsequent advection may finally result in the export of reactive nitrogen reservoir compounds to the free troposphere and hence influence global atmospheric chemistry.
Atmospheric transport processes, relevant to high Alpine sites, were deduced from 2 sets of aerosol records: a 9-year record from the Jungfraujoch (3454 m) on the northern side of the Swiss Alps and a 2.5-year record from Colle Gnifetti (4452 m) on the southern side. A classification scheme for synoptic weather types was applied to separate the aerosol data into groups corresponding to different atmospheric transport conditions. For both sites, vertical aerosol transport by thermally driven convection, acting between late spring and late summer, was found to be the dominant transport process. In summer, the thermally-driven aerosol transport to both sites caused an increase of the seasonally averaged aerosol concentration between 0800 and 1800 local standard time by a factor of two. Under anticyclonic conditions, when subsidence on a synoptic scale is present, the thermally driven aerosol transport is most pronounced. Therefore, the aerosol determining thermal transport takes place within a synoptic scale vertical motion of opposite direction. Under cyclonic conditions, when lifting on a synoptic scale is present, the thermally driven aerosol transport is nearly absent. In winter, thermally driven convection does not contribute to the aerosol concentrations at both sites. Nevertheless, also in winter statistically significant differences in aerosol concentration were found between cyclonic and anticyclonic weather conditions, which can be attributed to the vertical transport acting on the synoptic scale. These differences in aerosol concentration were small compared to the corresponding differences in summer. Within the weather types, which are dominated by horizontal advection in the Alpine region, the aerosol concentrations are more difficult to interpret with respect to the effective transport process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.