The finite element method was used to model the moisture movement and strain in the wood supports of panel paintings, in response to changing climate conditions – temperature and relative humidity (RH). The material properties of lime wood (Tilia sp.), determined experimentally, were used in the modelling. Critical amplitudes of cyclic sinusoidal RH fluctuations generating strain of 0.002 in the most responsive tangential direction of the unrestrained, single wood panel, which the pictorial layer was assumed to endure without damage, were derived for the mid‐RH region as a function of cycle duration, panel thickness and diffusion configuration. Panels do not respond significantly to diurnal fluctuations or shorter. The panels respond more and more significantly when the duration of the fluctuations increases until the panel fully responds to each cycle. These fluctuation periods are 14 and 90 days at 20 °C for a panel thickness of 10 and 40 mm, respectively, with two faces of a panel diffusively opened. Sinusoidal RH variations bringing about wood’s full response have the critical amplitude of ±6% RH, that is strain of 0.002 endangering the pictorial layer is produced at such amplitude in the tangential direction of the unrestrained panel.
An atom trapping technique for determining absolute, total ionization cross sections ͑TICS͒ out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the "trap loss" technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6 2 P 3/2 state between 7 eV and 400 eV. CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region ͑Ͻ11 eV͒ where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.
The drying shrinkage accumulation from exposure of freshly prepared gesso layers to relative humidity (RH) cycles was determined to elucidate the mechanism of craquelure pattern formation on panel paintings. The progresive drying shrinkage of the gesso is observed only under the cycles going to high RH levels which bring about transitions from brittle to ductile state of the material. The first incidence of fracture on the gesso layers occurred after a limited number of cycles ranging between a few and 100 for a range of layer thickness between 0.5 and 1 mm. The craquelure patterns stabilised also after a limited number of cycles (30 for the 1-mm thick layer). Upon increase in the gesso layer thickness, the strength of the layer is reduced and the spacing of shrinkage fractures increases. The study demonstrated that craquelure patterns, mimicking historical ones, can be realistically produced in laboratory conditions. Such studies would provide useful information for preparing specimens simulating historic panel paintings and would inform the current efforts on automatic, computer-aided classifications of crack formations on paintings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.