Abstract. Site-specific information on land management practices are often desired to make better assessments of their environmental impacts. A study was conducted in Lubbock, Texas, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alterations in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from a portable X-ray fluorescence (PXRF) spectrometer. Soil samples were collected from managed (well irrigated) and non-managed (non-irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p < 0.05) higher in the managed zones of all the golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were for the most part significantly (p < 0.05) higher in the managed areas. Water quality reports collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF-quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85 % of the variability associated with soil salinity at these facilities.
To evaluate the effect of olive mill wastewater (OMW) application on soil hydraulic and transport properties, two treatment sites, which had been irrigated with OMW for 5 and 15 years, and one control site being irrigated with freshwater were compared. The transport and leaching experiment results showed that a portion of the total soil water was available for transport processes while the remaining of the soil water was considered immobile and not readily accessible for solutes. The separation in water fractions of different mobilities was surprisingly consistent among OMW treatments. The bromide recovery rate decreased with the application of OMW showing that tracer molecules became trapped within immobile water phases. The application of OMW increased significantly the soil water-holding capacity, whereas the soil hydraulic conductivity in the near saturation range decreased significantly with long-term OMW application. The soil irrigated with OMW had significantly higher organic matter content, lower bulk density and relatively higher total porosity, but lower macroporosity than that of control sites. We concluded that the soil was increasingly coated with complex organic molecules originating from OMW, as a result, solute exchange between inter-and intrasoil aggregate water was hindered. Although OMW could cause soil and water pollution, its use in agriculture is promoted because of high nutrients and organic matter contents.
Abstract. Site-specific information on land management practices are often desired to make better assertions of their environmental impacts. A study was conducted in Lubbock, TX, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alteration in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from portable x-ray fluorescence (PXRF) spectrometer. Soil samples were collected from the managed (well irrigated) and non-managed (non irrigated) areas of seven golf course facilities at 0–10, 10–20, and 20–30 cm depths, and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p < 0.05) higher in the managed zones of all the golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were in most part significantly (p < 0.05) higher in the managed areas. Water quality report collected over a 22-year period (1991–2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus, supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23–85% of the variability associated with soil salinity at these facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.