Plasmas are an attractive medium for the next generation of particle accelerators because they can support electric fields greater than several hundred gigavolts per meter. These accelerating fields are generated by relativistic plasma waves-space-charge oscillations-that can be excited when a high-intensity laser propagates through a plasma. Large currents of background electrons can then be trapped and subsequently accelerated by these relativistic waves. In the forced laser wake field regime, where the laser pulse length is of the order of the plasma wavelength, we show that a gain in maximum electron energy of up to 200 megaelectronvolts can be achieved, along with an improvement in the quality of the ultrashort electron beam.
The interaction of short and intense laser pulses with plasmas is a very efficient source of relativistic electrons with tunable properties. In low-density plasmas, we observed bunches of electrons up to 200 MeV, accelerated in the wakefield of the laser pulse. Less energetic electrons (tens of megaelectronvolt) have been obtained, albeit with a higher efficiency, during the interaction with a pre-exploded foil or a solid target. When these relativistic electrons slow down in a thick tungsten target, they emit very energetic Bremsstrahlung photons which have been diagnosed directly with photoconductors, and indirectly through photonuclear activation measurements. Dose, photoactivation, and photofission measurements are reported. These results are in reasonable agreement, over three orders of magnitude, with a model built on laser–plasma interaction and electron transport numerical simulations.
Imaging plates from Fuji (BAS-SR, MS, and TR types) are phosphor films routinely used in ultra high intensity laser experiments. However, few data are available on the absolute IP response functions to ionizing particles. We have previously measured and modeled the IP response functions to protons. We focus here on the determination of the responses to photons, electrons, and (4)He particles. The response functions are obtained on an energy range going from a few tens of keV to a few tens of MeV and are compared to available data. The IP sensitivities to the different ionizing particles demonstrate a quenching effect depending on the particle stopping power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.