The use of internet has affected almost every field today. With the increase in use of internet, the number of malwares affecting the systems has also increased to a great deal. A number of techniques have been developed by the researchers in order to detect these malwares. The Malware Detection consists of two parts, the analysis part and the detection part. Malwares analysis can be categorized into Static analysis, Dynamic analysis and Hybrid Analysis. The Detection techniques can broadly be classified into Signature based techniques and Behaviour based techniques. A brief introduction of Malware Detection techniques is addressed here. The process of Feature Extraction plays a very important role in determining the efficiency and accuracy of the Malware Detection process. It aims at determining the subset of features that helps better differentiate between the malicious and benign files. We aim to provide a Feature Extraction process based on Genetic process that can be used for Malware Detection.
Early detection of leukemia increases the chances of a speedier recovery. If a patient exhibits any symptoms, doctors would often examine a blood sample slide under a microscope to detect hematological malignancies. Manually categorizing leukocytes as normal or abnormal requires examining the many characteristics of the cells, which is time-consuming and error-prone. This research aims to create a transfer learning-based Acute Lymphocytic Leukemia (ALL) detection system that is both efficient and easy. To overcome the critical challenges associated with feature extraction, we used EfficientNet, the most recent and most substantial deep learning model. In this article, eight EfficientNets variations are used to extract features and are compared based on classification accuracy. This work uses an ensemble of three sophisticated classifiers, namely Support Vector Machine (SVM), Random Forest, and Logistic Regression, which achieves a classification accuracy of 98.5%.
In the medical field, automated and computerised analytic tools are essential for faster disease diagnosis. The main objective of this research work is to classify the leukocytes accurately into four different subtypes based on the pattern of the nucleus. The features are extracted from the segmented nucleus, which play a vital role in the pattern recognition. The technique comprises a novel idea of computing the statistical measures such as peak difference and standard deviation of the radon transformed graph for a single angle of rotation along with other features. Three Gray Level Cooccurrence Matrix (GLCM) based features, two geometric features and four RST moment invariants are also extracted for feature fusion. The fused feature vectors are trained and evaluated using random forest classification algorithm.This method provides an overall accuracy of 97.61% and it is able to determine the lymphocyte, neutrophil and eosinophil with 100% accuracy. The classification without incorporating radon transform features is also performed which provides an accuracy of only 80.95%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.