Homogeneous nucleation of water is investigated in argon and in nitrogen at about 240 K and 0.1 MPa, 1 MPa, and 2 MPa by means of a pulse expansion wave tube. The surface tension reduction at high pressure qualitatively explains the observed enhancement of the nucleation rate of water in argon as well as in nitrogen. The differences in nucleation rates for the two mixtures at high pressure are consistent with the differences in adsorption behavior of the different carrier gas molecules. At low pressure, there is not enough carrier gas available to ensure the growing clusters are adequately thermalized by collisions with carrier gas molecules so that the nucleation rate is lower than under isothermal conditions. This reduction depends on the carrier gas, pressure, and temperature. A qualitative agreement between experiments and theory is found for argon and nitrogen as carrier gases. As expected, the reduction in the nucleation rates is more pronounced at higher temperatures. For helium as the carrier gas, non-isothermal effects appear to be substantially stronger than predicted by theory. The critical cluster sizes are determined experimentally and theoretically according to the Gibbs–Thomson equation, showing a reasonable agreement as documented in the literature. Finally, we propose an empirical correction of the classical nucleation theory for the nucleation rate calculation. The empirical expression is in agreement with the experimental data for the analyzed mixtures (water–helium, water–argon, and water–nitrogen) and thermodynamic conditions (0.06 MPa–2 MPa and 220 K–260 K).
New homogeneous nucleation experiments are presented at 240 K for water in carrier gas mixtures of nitrogen with carbon dioxide molar fractions of 5%, 15%, and 25%. The pulse expansion wave tube is used to test three different pressure conditions, namely, 0.1, 1, and 2 MPa. In addition, a restricted series of nucleation experiments is presented for 25% carbon dioxide mixtures at temperatures of 234 and 236 K at 0.1 MPa. As pressure and carbon dioxide content are increased, the nucleation rate increases accordingly. This behavior is attributed to the reduction in the water surface tension by the adsorption of carrier gas molecules. The new data are compared with theoretical predictions based on the classical nucleation theory and on extrapolations of empirical surface tension data to the supercooled conditions at 240 K. The extrapolation is carried out on the basis of a theoretical adsorption/surface tension model, extended to multi-component mixtures. The theoretical model appears to strongly overestimate the pressure and composition dependence. At relatively low pressures of 0.1 MPa, a reduction in the nucleation rates is found due to an incomplete thermalization of colliding clusters and carrier gas molecules. The observed decrease in the nucleation rate is supported by the theoretical model of Barrett, generalized here for water in multi-component carrier gas mixtures. The temperature dependence of the nucleation rate at 0.1 MPa follows the scaling model proposed by Hale [J. Chem. Phys. 122, 204509 (2005)].
The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.
A novel design of a pulse expansion wave tube (PEWT) for the study of homogeneous nucleation in mixtures of vapours and gases is presented. The main difference with the previous design consists in a test section with flat walls, which avoid that optical windows and pressure transducers do affect the flow field locally. Additionally, the test section length is reduced by a factor two. The performance of the wave tube is investigated both experimentally and numerically. The thermal insulation of the piezoelectric pressure sensor is proved to be beneficial for accurate measurements. The smallest thickness possible of the diaphragm, initially separating the high-and low-pressure sections of the PEWT, is also shown to be crucial. The flow phenomena are simulated with a 2D numerical model. It is shown to correctly predict the gasdynamic features of the PEWT and the effects of the diaphragm opening process. Nucleation rates for water in helium are determined as a function of supersaturation for two different pressure conditions, 1 MPa and 0.1 MPa, at a temperature of 240 K. The good agreement with results from previous experiments shows that the geometrical mismatch of optical windows and pressure transducers in the original wave tube did not affect the nucleation rates significantly and that both the original and the new wave tube produce reliable measurement data.
Knowledge on critical cluster composition is important for improving the nucleation theory. Thus, homogeneous water nucleation experiments previously carried out in nitrogen and 0%, 5%, 15% and 25% of carbon dioxide ( Campagna et al. 2020a, 2021) are analyzed. The tests were conducted at 240 K and 0.1 MPa, 1 MPa and 2 MPa. The observed nucleation rates are strongly dependent on supersaturation, pressure, temperature and mixture composition. These experimentally found dependencies can be used to derive the composition of critical clusters by means of the nucleation theorem. In this way, a macroscopic quantity, nucleation rate, reveals properties of critical clusters consisting of a few tens of molecules. Two novel methods are presented for the detailed application of the nucleation theorem. The first method extends to mixtures of $$\,\,\,\,\,\,\,N>2\,\,\,\,\,\,$$ N > 2 components the approach used in literature for two components. The second method not only applies to $$N>2$$ N > 2 mixtures in a more straightforward manner, but it can also be used for unary as well as for binary and multi-component nucleation cases. To the best of our knowledge, for the first time the critical cluster composition is computed for high pressure nucleation data of a vapor (here water) in mixtures of two carrier gases (here carbon dioxide–nitrogen). After a proper parameterization of the nucleation rate data, both methods consistently lead to the same critical nuclei compositions within the experimental uncertainty. Increasing pressure and carbon dioxide molar fraction at fixed supersaturation leads to a decrease in the water content of the critical cluster, while the adsorbed number of nitrogen and carbon dioxide molecules increases. As a consequence, the surface tension decreases. This outcome explains the observed increase in the nucleation rate with increasing pressure and carbon dioxide molar fraction at constant supersaturation. Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.