This report describes the cloning, expression and characterization of two members of a novel human gene family of proteins, HBNF and MK, which exhibit neurite outgrowth-promoting activity. The HBNF cDNA gene codes for a 168-residue protein which is a precursor for a previously described brain-derived heparin-binding protein of 136 amino acids. The second human gene identified in this study, called MK, codes for a 143-residue protein (including a 22-amino acid signal sequence) which is 46% homologous with HBNF. Complementary DNA constructs coding for the mature HBNF and MK proteins were expressed in bacteria and purified by heparin affinity chromatography. These recombinant proteins exhibited neurite-outgrowth promoting activity, but lacked mitogenic activity. The HBNF gene is expressed in the brain of adult mice and rats, but only minimal expression of MK was observed in this tissue. Different patterns of developmental expression were observed in the embryonic mouse, with MK expression peaking in the brain between days E12 and E14 and diminishing to minimal levels in the adult, while expression of HBNF mRNA was observed to gradually increase during embryogenesis, reaching a maximal level at birth and maintaining this level into adulthood. Expression of these genes was also observed in the human embryonal carcinoma cell line, NT2/D1. Retinoic acid induced the expression of HBNF and MK 6- and 11-fold, respectively, in this cell line. Our studies indicate that HBNF and MK are members of a new family of highly conserved, developmentally regulated genes that may play a role in nervous tissue development and/or maintenance.
A heparin-binding protein with neurotrophic activity for perinatal rat neurons, termed HBNF, was purified to homogeneity from bovine brain utilizing pH 4.5 extraction, ammonium sulfate precipitation, cation exchange and heparin-Sepharose affinity chromatographies, and reverse phase HPLC. In the presence of protease inhibitors during extraction, a protein with an apparent molecular weight of 18 kDa was obtained in a yield of approximately 0.5 mg/kg brain tissue. The amino acid sequence of the first 114 residues of HBNF was determined and found to highly homologous to the cDNA-derived amino acid sequence of human HBNF, a 136-residue protein. Bovine and human HBNFs have identical molecular weights as judged by SDS gel electrophoresis and very similar amino acid compositions. This and overall sequence conservation suggest that bovine HBNF is also a 136 amino acid protein with a calculated molecular weight of approximately 15.5 kDa. The apparent discrepancy between calculated and observed molecular weights of bovine HBNF (and of human HBNF of which the complete sequence is known) is most likely a result of the highly basic nature of HBNF. If protease inhibitors were omitted during tissue extraction, two additional proteins with lower apparent molecular weights and identical N-terminal sequences were isolated, with the smallest forms being the major product. Amino acid analysis showed that the smaller forms correspond to C-terminally truncated HBNFs with calculated molecular weights of 13.6 and 12.4 kDa, lacking approximately 14 and 22 residues. Comparison of the HBNF protein sequence with sequences stored in the Protein Identification Resource/Genbank databases reveals high homology to the translation product of the MK-1 gene, which is retinoic acid-inducible in embryonic carcinoma cells and developmentally expressed during gestation in mice.
Although the FGFs have been subject to extensive biological studies, only limited progress has been made so far in determining the critical elements of structure-activity relationships in the FGFs. Among the recognized structural elements with potential to affect the biological activity of FGFs are the cysteine residues, and the heparin- and receptor-binding domains. These features have been studied using a variety of experimental approaches, but the available data are inconclusive. For example, ambiguity regarding the presence of a disulfide structure in FGFs was not resolved until the availability of x-ray crystal structure data. Furthermore, the functionally important heparin- and receptor-binding domains have been poorly characterized, with some interpretations being controversial. In this report, we describe a novel fragment of basic FGF (bFGF) with high biological activity [Ser78,96-bFGF(70-153)]. This fragment was generated by pronase treatment of heparin-bound recombinant Glu3,5Ser78,96-bFGF mutant and is active in vitro at an ED50 of about 100 ng/ml. The structure of the fragment and the manner by which it was generated provide additional insight into important aspects of structure-activity relationships in FGFs. Specifically, we conclude that (a) the cysteines in our bFGF mutant do not form a disulfide bond, (b) the high-affinity heparin binding of bFGF critically depends on an intact 3-dimensional structure of the growth factor rather than on specific heparin-binding sequence domains, and (c) the bFGF sequence between residues 70 and 122 is important for high biological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.