The degradation of crystal violet (CV) and malachite green (MG) by potassium persulfate, was investigated by spectrophotometric methods. The behavior of degradation of crystal violet by persulfate was found to be similar to that of malachite green with only one important difference concerning the order with respect to the dye: the degradation is pseudo second order with respect to CV, but first order with respect to MG. The order with respect to persulfate is one in both cases. Degradation of CV by persulfate was effective at pH range of 2-8 and was found to increase with an increase in the initial concentrations of persulfate, temperature, and the presence of Ag + . The factors that were found to decrease the degradation rate of CV include: the initial concentration of CV, and the presence of halide salts and of the surfactant SDS. The rate of degradation remained the same after addition of Co(II), Ni(II) and Cu(II) salts. The activation parameters of the degradation reaction (E a , ∆G # , ∆H # and ∆S # ) were calculated. Finally, cytotoxic study revealed a decrease in the toxicity of the degradation products.
Kinetic study of the indirect oxidation of methylene blue on Pt electrode in presence of several strong electrolytes is undertaken. Different operating conditions that affected the treatment process were studied in order to find the best conditions. The order with respect to methylene blue is zero order in presence of chloride, but it is second order in presence of bromide. The oxidation rate was affected by current density, halide concentration (KCl, KBr), nature of supporting electrolyte and initial pH. However, the initial dye concentration and temperature did not show a significant effect. The oxidation of methylene blue in presence of iodide, fluoride and sulfate is absent, but it is important in presence of chloride and bromide. The product of the indirect oxidation is the chloronated (bromonated) methylene violet bernthsen.
The chemical reaction of rhodamine B by electro-generated species using Pt and BDD electrodes was performed. The product(s) of this chemical reaction are related to the supporting electrolyte and electrolysis time. The rate of discoloration is affected by the current density, initial pH, temperature, and the nature of the supporting electrolyte. However, the initial dye concentration and the ionic strength did not show any significant effect on both electrodes. Discoloration of the dye and mineralization were not observed in presence of sulfate and nitrate with the Pt electrode, but occurred slowly with the BDD electrode. In the presence of KCl and KBr, the discoloration was very fast with both electrodes, and was accompanied with partial degradation. In the presence of KCl, the colorless rhodamine B solution turned rose after several hours of being set at rest.
The degradation of Alizarin Red S by electro-generated species using Pt and BDD electrodes was performed. The results were explained by the generation of OH * radical, S2O8 2− at BDD electrode and active chlorine species at Pt electrode. The slow degradation is affected by the current density, initial pH, temperature, initial dye concentration and the nature of the supporting electrolyte. However, the ionic strength showed a negligible effect on both electrodes. In the presence of KCl, the intermediates produced during the degradation are similar at both electrodes. In the presence of sulfate (at BDD electrode), the rate and the mechanism of the degradation are different from those in the presence of KCl. TOC analysis showed total mineralization of AR S.
The discoloration of the food colorant E131 (Patent Blue V) by K2S2O8 and KIO3 was investigated by spectrophotometric method. The discoloration is first order with respect to the food colorant and the oxidants. The discoloration rate constant increases with the increase in initial concentration of the oxidant and temperature; whereas discoloration decreases with the increase in concentration of E131 and chloride ion. In the presence of persulfate, Cu(II) and Fe(II) have a catalytic effect on discoloration but Ni(II) has not. The thermodynamic parameters (Ea, ∆H # , ∆S # , ∆G # ) of the discoloration in the presence and absence of Cu(II) and Fe(II) are calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.