A new model was developed to predict the mechanical properties of St22 grade cold rolled deep drawing steel by gene expression programming. To obtain a dataset to find out the effect of reduction rate on the mechanical properties of cold rolled and galvanized steel sheet, an experimental program was constructed in the real production plant by keeping all other process parameters constant. The training and testing data sets of gene expression programming model were obtained from the test results. For gene expression programming model, mechanical properties (yield strength, ultimate tensile strength and elongation) before cold rolling, chemical composition, initial sheet thickness and reduction rate were used as independent input variables, while mechanical properties after cold rolling (yield strength, ultimate tensile strength and elongation) were used as dependent output variables. Before constructing the gene expression programming models for dependent variables, dataset was analyzed using the analysis of variance and statistically significant (P ≤ 0.1) independent parameters, i.e. initial sheet thickness, reduction rate, initial yield strength, initial tensile strength, elongation and Mn content were used in gene expression programming model. Different models were obtained for each dependent variable depending on the significant independent variables using the training dataset and accuracy of the best models was verified with testing data set.The predicted values were compared with experimental results and it was found that models are in good agreement with the experimentally obtained results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.