Abstract. The purpose of this research was to generate, characterize, and investigate the in vivo efficacy of budesonide (BUD) microparticles prepared by spray-drying technology with a potential application as carriers for pulmonary administration with sustained-release profile and improved respirable fraction. Microspheres and porous particles of chitosan (drug/chitosan, 1:2) were prepared by spray drying using optimized process parameters and were characterized for different physicochemical parameters. Mass median aerodynamic diameter and geometric standard deviation for conventional, microspheres, and porous particles formulations were 2.75, 4.60, and 4.30 µm and 2.56, 1.75, and 2.54, respectively. Pharmacokinetic study was performed in rats by intratracheal administration of either placebo or developed dry powder inhalation (DPI) formulation. Pharmacokinetic parameters were calculated (Ka, Ke, T max , C max , AUC, and Vd) and these results indicated that developed formulations extended half life compared to conventional formulation with onefold to fourfold improved local and systemic bioavailability. Estimates of relative bioavailability suggested that developed formulations have excellent lung deposition characteristics with extended T 1/2 from 9.4 to 14 h compared to conventional formulation. Anti-inflammatory activity of BUD and developed formulations was compared and found to be similar. Cytotoxicity was determined in A549 alveolar epithelial cell line and found to be not toxic. In vivo pulmonary deposition of developed conventional formulation was studied using gamma scintigraphy and results indicated potential in vitro-in vivo correlation in performance of conventional BUD DPI formulation. From the DPI formulation prepared with porous particles, the concentration of BUD increased fourfold in the lungs, indicating pulmonary targeting potential of developed formulations.
Drug-induced QT prolongation has been reported in humans and animals. This potentially lethal effect can be induced by drugs interacting with a cardiac potassium channel, namely hERG (human ether-a go-go-related gene) leading to arrhythmia or torsade de pointes (TdP). Hence, in vitro evaluation of therapeutics for their effects on the rapid delayed rectifier current (IKr) mediated by the K(+) ion channel encoded by hERG is a valuable tool for identifying potential arrhythmic side effects during drug safety testing. Our objective was to evaluate the temperature-induced hERG channel blockade variation by human and veterinary drugs using the IonFlux 16 system. A panel of eight drugs was tested for IKr inhibition at both ambient (23 °C) and physiological (37 °C) temperatures at various concentrations using IonFlux 16, an automated patch clamp system. Our results established that both amiodarone (IC(50) = 0.56 μM at 23 °C and 0.30 μM at 37 °C) and β-estradiol (IC(50) = 24.72 μM at 23 °C and 8.17 μM at 37 °C) showed a dose-dependent IKr blockade with a higher blockade at 37 °C. Whereas, blockade of IKr by both ivermectin (IC(50) = 12.52 μM at 23 °C and 24.41 μM at 37 °C) and frusemide (IC(50) = 12.58 μM at 23 °C and 25.55 μM at 37 °C) showed a dose-dependent IKr blockade with a lower blockade at 37 °C. Gentamicin, enrofloxacin, xylazine and albendazole did not block IKr at both the assessed temperatures. Collectively, these results demonstrate that the effect of temperature variation should be taken into consideration during the evaluation of test drugs for their hERG channel blockade potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.