In this study, aluminium 5005 and stainless steel 304L substrate surfaces were modified by thermal and hydrothermal treatments. Ni-Cr single splats were deposited onto these substrates at room temperature using plasma spraying. The collected splats were characterised qualitatively and quantitatively by Scanning Electron Microscopy (SEM) and ImageJ software. A splat classification scheme was developed based around splash and disk-type splats. The proportions of the different splat types were found to vary significantly as a function of substrate pretreatment, especially when the pretreatment involved heating. The effect of surface roughness to splat formation and splat shape was investigated. It was observed that surface roughness was not a critical factor in splat morphology. The above substrate surfaces were also characterised by X-ray photoelectron spectroscopy (XPS) using in-situ heating in vacuum to determine the effect of thermal pretreatment on substrate surface chemistry and the oxide thickness. It was found that heat treatment promoted a change in the chemical structure of the oxide surface layer which was consistent with the dehydration of oxyhydroxide to oxide. Dehydration of the substrate surface layer improved the physical contact between the splat and substrate which enhanced the formation of disk-splats, decreased the number of pores evident in the splats and increased number of splats and their diameter.
Thermal spray of polymers has had limited investigation due to the narrow processing windows that are inherent to polymer powders, especially their low temperatures of thermal degradation. The polymer poly aryl ether ether ketone (PEEK) has a high thermal degradation temperature and high resistance to alkaline and acidic attack. These properties led to PEEK being selected for investigation. To minimise thermal degradation of the particles, the high velocity air fuel (HVAF) technique was used. To investigate the effect of substrate pre-treatment on single splat properties, single splats were collected on aluminium 5052 substrates with six different pretreatments. The single splats collected were imaged by scanning electron microscopy (SEM) and image analysis was performed with ImageJ, an open source scientific graphics package. On substrates held at 323°C it was found that substrate pretreatment had a significant effect on the circularity and area of single splats, and also on the number of splats deposited on the substrates. Increases in splat circularity, area, and the number of splats deposited on the surface were linked to the decrease in chemisorbed water on the substrate surface and the decrease of surface roughness. This proved that surface chemistry and roughness are crucial to forming single splats with good properties, which will lead to coatings of good properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.