The rapid evolution of information and communication technologies (ICT) has led to changes in business processes, namely in public services or in local administration. Currently, customer expectations are focused on an incremental modernization that may imply greater mobility, cost reduction, and response times. This chapter describes a multidisciplinary and integrative approach considering the specificity of the Portuguese local administration. The proposed approach assumes of continuous improvement within the scope of integrated and sustained governance, which is based on the alignment of ICT with business. Thus, it is recommended that the contributions of the approach are the optimization of practices established in the domains of sustainability, human capital, increased productivity, optimization of information security practices, and improvement of environmental quality, promoting alignment with Green IT.
Aiming reliable detection and localization of cerebral blood flow and emboli, embolic signals were added to simulated middle cerebral artery Doppler signals and analysed. Short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used in the evaluation. The following parameters were used in this study: the powers of the embolic signals added were 5, 6, 6.5, 7, 7.5, 8 and 9 dB; the mother wavelets for CWT analysis were Morlet, Mexican hat, Meyer, Gaussian (order 4) and Daubechies (orders 4 and 8); and the thresholds for detection (equated in terms of false positive, false negative and sensitivity) were 2 and 3.5 dB for the CWT and STFT, respectively. The results indicate that although the STFT allows accurately detecting emboli, better time localization can be achieved with the CWT. Among the CWT, the current best overall results were obtained with Mexican Hat mother wavelet, with optimal results for sensitivity (100% detection rate) for nearly all emboli power values studied.
A broad view on the analysis of Doppler embolic signals is presented, uniting physics, engineering and computing, and clinical aspects. The overview of the field discusses the physiological significance of emboli and Doppler ultrasound with particular attention given to Transcranial Doppler; an outline of high-performance computing is presented, disambiguating the terminology and concepts used thereafter. The presentation of the major diagnostic approaches to Doppler embolic signals focuses on the most significant methods and techniques used to detect and classify embolic events including the clinical relevancy. Coverage of estimators such as time-frequency, time-scale, and displacement-frequency is included. The discussion of current approaches targets areas of identified need for improvement. A brief historical perspective of high-performance computing of Doppler blood flow signals and particularly Doppler embolic signals is accompanied by the reasoning behind the technological trends and approaches. The final remarks include, as a conclusion, a summary of the contribution and as future trends, some pathways hinting to where new developments might be expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.