Cluster of differentiation 1c (CD1c)-dependent self-reactive T cells are abundant in human blood, but self-antigens presented by CD1c to the T-cell receptors of these cells are poorly understood. Here we present a crystal structure of CD1c determined at 2.4 Å revealing an extended ligand binding potential of the antigen groove and a substantially different conformation compared with known CD1c structures. Computational simulations exploring different occupancy states of the groove reenacted these different CD1c conformations and suggested cholesteryl esters (CE) and acylated steryl glycosides (ASG) as new ligand classes for CD1c. Confirming this, we show that binding of CE and ASG to CD1c enables the binding of human CD1c self-reactive T-cell receptors. Hence, human CD1c adopts different conformations dependent on ligand occupancy of its groove, with CE and ASG stabilizing CD1c conformations that provide a footprint for binding of CD1c self-reactive T-cell receptors.CD1 | lipid antigen | antigen presentation | T cell | cholesteryl ester C luster of differentiation 1 (CD1) proteins are a family of MHC class I-like glycoproteins that present lipid antigens to T cells. CD1 restricted T cells are abundant in humans and play important roles in host defense and immune regulation. Human CD1 proteins comprise five CD1 isoforms, CD1a, CD1b, CD1c, CD1d, and CD1e, which exhibit different intracellular trafficking behaviors and ligand binding preferences (1). Structurally, the main differences between these CD1 isoforms lie in the architecture of their lipophilic ligand binding grooves. Whereas all CD1 isoforms share a highly conserved A′ channel (or pocket) for binding C18-C26 acyl chains, specialization is provided by further connecting channels (2-7). In CD1a, the A′ channel is "fused" to a wide and shallow F′ channel, enabling binding of lipopeptides such as mycobacterial didehydroxymycobactin (DDM) (8). CD1b features a unique T′ tunnel that connects A′ and F′, thereby forming a "superchannel" for accommodating very long acyl chains (e.g., mycobacterial mycolates) (2, 4). CD1d, the only isoform also conserved in rodents, exhibits a twobranched ligand binding groove with two linear channels A′ and F′ connected near the main portal into the groove, known as the F′ portal. A similar two-branched arrangement of A′ and F′ is seen in CD1e, the only CD1 isoform not expressed on the cell surface. Compared with CD1d, CD1a, and CD1b, the portal into the groove in CD1e is widely exposed, consistent with its known role in lipid transfer processes inside lysosomes (6).CD1c presents foreign-(9, 10) as well as self-lipid antigens to T cells (11). Two recent crystal structures of human CD1c revealed a two-branched design similar to that of CD1d and CD1e, with two channels A′ and F′ connecting near the groove portal. In these structures, a mycobacterial phosphomycoketide (PM) or mannosyl-β1-phosphomycoketide (MPM) occupied the A′ channel, whereas an undefined short ligand was present in the F′ channel (7, 12). The spatial arrangement of...
Atmospheric nitrogen fixation by photosynthetic cyanobacteria (diazotrophs) strongly influences oceanic primary production and in turn affects global biogeochemical cycles. Species of the genus Trichodesmium are major contributors to marine diazotrophy, accounting for a significant proportion of the fixed nitrogen in tropical and subtropical oceans. However, Trichodesmium spp. are metabolically constrained by the availability of iron, an essential element for both the photosynthetic apparatus and the nitrogenase enzyme. Survival strategies in low-iron environments are typically poorly characterized at the molecular level, because these bacteria are recalcitrant to genetic manipulation. Here, we studied a homolog of the iron deficiency-induced A (IdiA)/ferric uptake transporter A (FutA) protein, Tery_3377, which has been used as an in situ iron-stress biomarker. IdiA/FutA has an ambiguous function in cyanobacteria, with its homologs hypothesized to be involved in distinct processes depending on their cellular localization. Using signal sequence fusions to GFP and heterologous expression in the model cyanobacterium Synechocystis sp. PCC 6803, we show that Tery_3377 is targeted to the periplasm by the twin-arginine translocase and can complement the deletion of the native Synechocystis ferric-iron ABC transporter periplasmic binding protein (FutA2). EPR spectroscopy revealed that purified recombinant Tery_3377 has specificity for iron in the Fe3+ state, and an X-ray crystallography–determined structure uncovered a functional iron substrate–binding domain, with Fe3+ pentacoordinated by protein and buffer ligands. Our results support assignment of Tery_3377 as a functional FutA subunit of an Fe3+ ABC transporter but do not rule out dual IdiA function.
Neisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and the organism is listed by the World Health Organization as a high-priority pathogen for research and development of new control measures, including vaccines. In this study, we demonstrated that the N. gonorrhoeae adhesin complex protein (Ng-ACP) was conserved and expressed by 50 gonococcal strains and that recombinant proteins induced antibodies in mice that killed the bacteria in vitro. We determined the structure of Ng-ACP by X-ray crystallography and investigated structural conservation with Neisseria meningitidis ACP and MliC/PliC proteins from other bacteria which act as inhibitors of the human innate defense molecule lysozyme. These findings are important and suggest that Ng-ACP could provide a potential dual target for tackling gonococcal infections.
The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes typically encode two different types of FutA iron binding proteins: periplasmic FutA2 ABC transporter subunits bind ferric (Fe3+), while cytosolic FutA1 binds ferrous (Fe2+). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a solvent molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell was consistent with an overall charge-neutral ferric binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray induced photoreduction of the iron center with observation of the ferrous binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral ferrous binding site. Room temperature dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between ferric and ferrous states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.