Systematic reviews or meta-analyses critically appraise and formally synthesize the best existing evidence to provide a statement of conclusion that answers specific clinical questions. Readers and reviewers, however, must recognize that the quality and strength of recommendations in a review are only as strong as the quality of studies that it analyzes. Thus, great care must be used in the interpretation of bias and extrapolation of the review's findings to translation to clinical practice. Without advanced education on the topic, the reader may follow the steps discussed herein to perform a systematic review.
As the number of total joint arthroplasty and internal fixation procedures continues to rise, the threat of infection following surgery has significant clinical implications. These infections may have highly morbid consequences to patients, who often endure additional surgeries and lengthy exposures to systemic antibiotics, neither of which are guaranteed to resolve the infection. Of particular concern is the threat of bacterial biofilm development, since biofilm-mediated infections are difficult to diagnose and effective treatments are lacking. Developing therapeutic strategies have targeted mechanisms of biofilm formation and the means by which these bacteria communicate with each other to take on specialized roles such as persister cells within the biofilm. In addition, prevention of infection through novel coatings for prostheses and the local delivery of high concentrations of antibiotics by absorbable carriers has shown promise in laboratory and animal studies. Biofilm development, especially in an arthoplasty environment, and future diagnostic and treatment options are discussed.
Long bone osteomyelitis presents a variety of challenges to the physician. The severity of the disease is staged depending upon the infection's particular features, including its etiology, pathogenesis, extent of bone involvement, duration, and host factors particular to the individual patient (infant, child, adult, or immunocompromised). Long bone osteomyelitis may be either hematogenous or caused by a contiguous spread of infection. A single pathogenic organism is almost always recovered from the bone in hematogenous osteomyelitis; Staphylococcus aureus is the most common organism isolated. A variety of multidrugresistant organisms of bacteria continue to be a source of concern in arresting infection. The primary weapons to treat these infections are culture-specific antibiotics, aggressive debridement, muscle flaps, and bone grafts. This article offers a basic review of the classification, etiology, epidemiology, pathogenesis, and treatment of long bone osteomyelitis.
Adult osteomyelitis remains difficult to treat, with considerable morbidity and costs to the health care system. Bacteria reach bone through the bloodstream, from a contiguous focus of infection, from penetrating trauma, or from operative intervention. Bone necrosis begins early, limiting the possibility of eradicating the pathogens, and leading to a chronic condition. Appropriate treatment includes culture-directed antibiotic therapy and operative debridement of all necrotic bone and soft tissue. Treatment often involves a combination of antibiotics. Operative treatment is often staged and includes debridement, dead space management, soft tissue coverage, restoration of blood supply, and stabilization. Clinicians and patients must share a clear understanding of the goals of treatment and the difficulties that may persist after the initial course of therapy or surgical intervention. Chronic pain and recurrence of infection still remain possible even when the acute symptoms of adult osteomyelitis have resolved.
Mortality from battlefield wounds has historically declined, thanks to better surgical management, faster transport of casualties, and improved antibiotics. Today, one of the major challenges facing U.S. military caregivers is the presence of multidrug-resistant organisms in orthopaedic extremity wounds. The most frequently identified resistant strains of bacteria are Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus-baumannii complex. Overuse of broad-spectrum antibiotics may be an important factor in building resistant strains. Acinetobacter infections appear to hospital-acquired and not from an initial colonization of the injury. More research is required to give military physicians the tools they require to reduce the infection rate and defeat multidrug-resistant organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.