In this report, we describe the inactivation and sitespecific light induction of plasmid expression using a photosensitive caging compound. Plasmids coding for luciferase were caged with 1-(4,5-dimethoxy-2-nitrophenyl)diazoethane (DMNPE) and transfected into ϳ1-cm diameter sites of the skin of rats with particle bombardment. Skin sites transfected with caged plasmids did not express luciferase. However, subsequent exposure of transfected skin sites to 355-nm laser light induced luciferase expression in proportion to the amount of light. Liposome transfection of HeLa cells with DMNPE-caged green fluorescent protein (GFP) plasmids showed similar results. Caging DNA with DMNPE blocks expression at the level of transcription, since in vitro production of mRNA from linearized GFP plasmid was also blocked by caging and subsequently restored by exposure to light. Under the reaction conditions of these experiments, our absorbance data indicate that each DMNPE-caged GFP plasmid contains ϳ270 caging groups. In addition to inhibition and subsequent restoration of plasmid bioactivity, the presence and photocleavage of this relatively small number of cage groups also alters electrophoretic mobility of plasmids and optical absorption characteristics. This light-induced expression strategy provides a new means to target the expression of genetic material with spatial and temporal specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.