Abstract. The air bubble structure is an important parameter to determine the radiation properties of graupel and hailstones. For 3-D imaging of this structure at micron resolution, a cryo-stage was developed. This stage was used at the tomography beamline of the Swiss Light Source (SLS) synchrotron facility. The cryo-stage setup provides for the first time 3-D-data on the individual pore morphology of ice particles down to infrared wavelength resolution. In the present study, both sub-mm size natural and artificial ice particles rimed in a wind tunnel were investigated. In the natural rimed ice particles, Y-shaped air-filled closed pores were found. When kept for half an hour at −8 • C, this morphology transformed into smaller and more rounded voids well known from literature. Therefore, these round structures seem to represent an artificial rather than in situ pore structure, in contrast to the observed y-shaped structures found in the natural ice particles. Hence, for morphological studies on natural ice samples, special care must be taken to minimize any thermal cycling between sampling and measurement, with least artifact production at liquid nitrogen temperatures.
Three dimensional air bubble structure including size distribution, concentration and spatial distribution are important clues in identifying the growth regime of graupel and hailstone. For imaging of the bubble structure, a cryo-stage was developed to adapt to the standard setup of the SLS X04SA tomography beamline (actually replaced by the TOMCAT beamline) at the Swiss Light Source synchrotron facility to the requirements of ice particle micro-tomography. The cryo-stage setup provides for the first time 3-D-data on the individual inner pore shape delineation down to μm spatial (voxel) resolution of sub-mm small naturally as well as wind tunnel rimed graupel particles. Special care must be taken for maintaining a cooling chain between sampling and measurement. It must be kept at liquid nitrogen temperature (77 K) until measurement of the original structure at the μm spatial scale. However, even at that temperature there is no chance to preserve any ice bubble structure at sub-μm spatial resolution due to the Kelvin effect. In natural graupel grains, Y-shaped morphology of air-filled pores was found. This morphology transformed into smaller and rounded voids well-known from literature when the ice particle was annealed for as short as half an hour at 265 K and must, therefore, be regarded as artificial rather than representing the in situ pore structure. With the new synchrotron tomography approach, quantitative information on the in situ pore structure statistics within individual samples representative for a known or, thus, deduced growth mode or history can be derived, in particular if combined with airplane sampling in the troposphere at in situ growth conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.