Glycogen storage disease type II (GSD II) is an autosomal recessive myopathy. Early and lateonset phenotypes are distinguished -infantile, juvenile and adult. Three mutations in the acid α-glucosidase gene are common in the Dutch patient population: IVS1(-13T→G), 525delT and delexon18. 63% of Dutch GSD II patients carry one or two of these mutations, and the genotype-phenotype correlation is known. To determine the frequency of GSD II, we have screened an unselected sample of neonates for the occurrence of these three mutations. Based on the calculated carrier frequencies, the predicted frequency of the disease is 1 in 40 000 divided by 1 in 138 000 for infantile GSD II and 1 in 57 000 for adult GSD II. This is about two to four times higher than previously suggested, which is a reason to become more familiar with the presentation of GSD II in its different clinical forms and to adjust the risk assessment for genetic counselling.
Under control conditions, the distinct types of gap junction channels could be distinguished on the basis of their permeability and single channel properties. Under various phosphorylating conditions, these channels behaved differently. Whereas agonists/antagonist of PKA did not affect permeability and conductance of all gap junction channels, variable changes were observed under PKC stimulation. Cx45 channels exhibited an additional conductance state, the detection of the smaller conductance states of Cx43 channels was favored, and Cx26 channels were less often observed. In contrast to the other kinases, agonists/antagonist of PKG affected permeability and conductance of Cx43 gap junction channels only. Taken together, these results show that distinct types of gap junction channels are differentially regulated by similar phosphorylating conditions. This differential regulation may be of physiological importance during modulation of cell-to-cell communication of more complex cell systems.
Patients with glycogen storage disease type II (GSDII, Pompe disease) suffer from progressive muscle weakness due to acid alpha-glucosidase deficiency. The disease is inherited as an autosomal recessive trait with a spectrum of clinical phenotypes. We have investigated 29 cases of GSDII and thereby identified 55 pathogenic mutations of the acid alpha-glucosidase gene (GAA) encoding acid maltase. There were 34 different mutations identified, 22 of which were novel. All of the missense mutations and two other mutations with an unpredictable effect on acid alpha-glucosidase synthesis and function were transiently expressed in COS cells. The effect of a novel splice-site mutation was investigated by real-time PCR analysis. The outcome of our analysis underscores the notion that the clinical phenotype of GSDII is largely dictated by the nature of the mutations in the GAA alleles. This genotype-phenotype correlation makes DNA analysis a valuable tool to help predict the clinical course of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.