Impact craters help scientists to understand the geological history of planetary bodies. The aim of this paper is to improve the existing methodology for impact craters detection in images of planetary surfaces using a new approach based on morphological image processing (MIP). The improved methodology uses MIP followed by template matching based on fast Fourier transform (FFT). In this phase, a probability volume is generated based on the correlation between templates and images. The analysis of this probability volume allows the detection of different size of impact craters. We have applied the improved methodology to detect impact craters in a set of images from Thermal Emission Imaging System onboard the 2001 Mars Odyssey Space probe. The improved methodology has achieved a crater detection rate of 92.23% which can be considered robust, since results were obtained based on geomorphological features, different illumination conditions and low spatial resolution. The achieved results proved the viability of using MIP and template matching by FFT, to detect impact craters from planetary surfaces.
ABSTRACT:While high-resolution remote sensing images have increased application possibilities for urban studies, the large number of shadow areas has created challenges to processing and extracting information from these images. Furthermore, shadows can reduce or omit information from the surface as well as degrading the visual quality of images. The pixels of shadows tend to have lower radiance response within the spectrum and are often confused with low reflectance targets. In this work, a shadow detection method was proposed using a morphological operator for dark pattern identification combined with spectral indices. The aims are to avoid misclassification in shadow identification through properties provided by them on color models and, therefore, to improve shadow detection accuracy. Experimental results were tested applying the panchromatic and multispectral band of WorldView-2 image from São Paulo city in Brazil, which is a complex urban environment composed by high objects like tall buildings causing large shadow areas. Black top-hat with area injunction was applied in PAN image and shadow identification performance has improved with index as Normalized Difference Vegetation Index (NDVI) and Normalized Saturation-Value Difference Index (NSDVI) ratio from HSV color space obtained from pansharpened multispectral WV-2 image. An increase in distinction between shadows and others objects was observed, which was tested for the completeness, correctness and quality measures computed, using a created manual shadow mask as reference. Therefore, this method can contribute to overcoming difficulties faced by other techniques that need shadow detection as a first necessary preprocessing step, like object recognition, image matching, 3D reconstruction, etc.* Corresponding author. This is useful to know for communication with the appropriate person in cases with more than one author.
ABSTRACT:The matrix of energy generation in Brazil is predominantly hydroelectric power. Consequently, the reservoirs need constant monitoring due to the large volume of artificially dammed water. Images from remote sensing can provide reliable information concerning water bodies. In this paper, we use remote sensing imagery to monitor the Sobradinho dam in three different epochs. The objective was to verify quantitatively the area of the dam's surface reduced due to the drought of 2015, which was considered the worst in history. The approach used water surface area estimations from bands of Landsat5 and Landsat8 satellites which highlight water bodies better from other features present on surface of the Earth. Through the techniques of growth region and normalized difference water index (NDWI), we determined the surface area of the reservoir in 2011 and calculated the decrease caused by the drought. By analyzing the numbers provided by the results it is possible to estimate how the Sobradinho reservoir has been affected by the drastic drought. The results show that the Landsat images enable the monitoring of large reservoirs. Bearing in mind that monitoring is a primary and indispensable tool, not only for technical study, but also for economic and environmental research, it can help establish planning projects and water administration strategies for future decisions about the hydrical resource priority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.