We present spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 ≤ z ≤ 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-Z Supernova Search Team (Garnavich et al. 1998;Schmidt et al. 1998) and Riess et al. (1998a), this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H 0 ), the mass density (Ω M ), the cosmological constant (i.e., the vacuum energy density, Ω Λ ), the deceleration parameter (q 0 ), and the dynamical age of the Universe (t 0 ). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (Ω M = 0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., Ω Λ > 0) and a current acceleration of the expansion (i.e., q 0 < 0). With no prior constraint on mass density other than Ω M ≥ 0, the spectroscopically confirmed SNe Ia are statistically consistent with q 0 < 0 at the 2.8σ -2and 3.9σ confidence levels, and with Ω Λ > 0 at the 3.0σ and 4.0σ confidence levels, for two different fitting methods respectively. Fixing a "minimal" mass density, Ω M = 0.2, results in the weakest detection, Ω Λ > 0 at the 3.0σ confidence level from one of the two methods. For a flat-Universe prior (Ω M + Ω Λ = 1), the spectroscopically confirmed SNe Ia require Ω Λ > 0 at 7σ and 9σ formal significance for the two different fitting methods. A Universe closed by ordinary matter (i.e., Ω M = 1) is formally ruled out at the 7σ to 8σ confidence level for the two different fitting methods. We estimate the dynamical age of the Universe to be 14.2 ±1.5 Gyr including systematic uncertainties in the current Cepheid distance scale. We estimate the likely effect of several sources of systematic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these effects reconciles the data with Ω Λ = 0 and q 0 ≥ 0.
An investigation is made of the merits of various emission-line intensity ratios for classifying the spectra of extragalactic objects. It is shown empirically that several combinations of easily-measured lines can be used to separate objects into one of four categories according to the principal excitation mechanism: normal Hll regions, planetary nebulae, objects photoionized by a power-law continuum, and objects excited by shock-wave heating. A two-dimensional quantitative classification scheme is suggested.
We present a new compilation of Type Ia supernovae (SNe Ia), a new data set of low-redshift nearby-Hubble-flow SNe, and new analysis procedures to work with these heterogeneous compilations. This ''Union'' compilation of 414 SNe Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older data sets, as well as the recently extended data set of distant supernovae observed with the Hubble Space Telescope (HST ). A single, consistent, and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers. We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO). The constraint we obtain from supernovae on the dark energy density is à ¼ 0:713 þ0:027 À0:029 (stat) þ0:036 À0:039 (sys), for a flat, ÃCDM universe. Assuming a constant equation of state parameter, w, the combined constraints from SNe, BAO, and A CMB give w ¼ À0:969 þ0:059 À0:063 (stat) þ0:063 À0:066 (sys). While our results are consistent with a cosmological constant, we obtain only relatively weak constraints on a w that varies with redshift. In particular, the current SN data do not yet significantly constrain w at z > 1. With the addition of our new nearby Hubble-flow SNe Ia, these resulting cosmological constraints are currently the tightest available.
We develop a method for estimating the host galaxy dust extinction for type Ia supernovae based on an observational coincidence first noted by Lira (1995), who found that the B − V evolution during the period from 30-90 days after V maximum is remarkably similar for all events, regardless of light curve shape. This fact is used to calibrate the dependence of the B max − V max and V max − I max colors on the light curve decline rate parameter ∆m 15 (B), which can, in turn, be used to separately estimate the host galaxy extinction. Using these methods to eliminate the effects of reddening, we reexamine the functional form of the decline rate versus luminosity relationship and provide an updated estimate of the Hubble constant of H • = 63.3 ± 2.2(internal) ± 3.5(external) km s −1 Mpc −1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.