Associations with symbiotic organisms can serve as a strategy for social insects to resist pathogens. Antibiotics produced by attine ectosymbionts (Actinobacteria) suppress the growth of Escovopsis spp., the specialized parasite of attine fungus gardens. Our objective was to evaluate whether the presence or absence of symbiotic actinobacteria covering the whole ant cuticle is related to differential immunocompetence, respiratory rate and cuticular hydrocarbons (CHs). We evaluated these parameters in three worker groups of Acromyrmex subterraneus subterraneus: External workers (EXT), internal workers with actinobacteria covering the whole body (INB) and internal workers without actinobacteria covering the whole body (INØ). We also eliminated the actinobacteria by antibiotic treatment and examined worker encapsulation response. INB ants showed lower rates of encapsulation and respiration than did the EXT and INØ ants. The lower encapsulation rate did not seem to be a cost imposed by actinomycetes because the elimination of the actinomycetes did not increase the encapsulation rate. Instead, we propose that actinobacteria confer protection to young workers until the maturation of their immune system. Actinobacteria do not seem to change nestmate recognition in these colonies. Although it is known that actinobacteria have a specific action against Escovopsis spp., our studies, along with other independent studies, indicate that actinomycetes may also be important for the individual health of the workers.
The grass-cutting ant Atta bisphaerica is one of the most serious pests in several pastures and crops in Brazil. Fungal diseases are a constant threat to these large societies composed of millions of closely related individuals. We investigated the occurrence of filamentous fungi associated with the ant A. bisphaerica in a pasture area of Viçosa, Minas Gerais State, Brazil. Several fungi species were isolated from forager ants, and two of them, known as entomopathogenic, Beauveria bassiana and Aspergillus ochraceus, were tested against worker ants in the laboratory. The two species were highly virulent, achieving 50 percent worker mortality within 4-5 days. It is the first time A. ochraceus, a commonly found fungal species, is reported to infect Atta species at a high prevalence. Possible uses for the fungus within biological control are discussed.
Leaf‐cutting ants are highly polyphagous insects, but some plants escape their attack due to the presence of secondary metabolites that are toxic to the ant–fungus symbiosis. Previous studies have demonstrated that the terpenoid β‐eudesmol extracted from Eucalyptus species (Myrtaceae) is responsible for the deleterious behavior in colonies of leaf‐cutting ant species. The objective of this study was to evaluate the effect of β‐eudesmol on workers of the leaf‐cutting ant Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). This chemical caused behavioral modification in the colonies, leading to mutilation and death of workers. It is suggested that β‐eudesmol interferes with colony nestmate recognition. As a consequence, colony cohesion may be disrupted by β‐eudesmol what could be used as an additional control tactic against this important pest ant.
Leaf-cutter ant species (Atta spp.) are key pests of cultivated crops in the Neotropics, and recent studies have demonstrated that workers of Atta spp., particularly of Atta sexdens rubropilosa, exhibit aggressive behavior among nestmates when in contact with the sesquiterpene beta-eudesmol, found in leaves of Eucalyptus maculata. However, the underlying mechanism sparking this behavior pattern has yet to be investigated. This work aimed to elucidate the mechanism by which this substance elicits aggression in workers of A. sexdens rubropilosa. The results, thus obtained, showed that beta-eudesmol is able to modify the chemical composition of the workers cuticle, impairing nestmate recognition, triggering alarm behavior and leading to nestmate aggression.
-Social parasites exhibit several characteristics that allow them to exploit their host species efficiently. The smaller size of parasite species is a trait commonly found in ants. In this work, we investigated several aspects of the reproductive biology of Acromyrmex ameliae De Souza, Soares & Della Lucia, a recently discovered parasite of Acromyrmex subterraneus subterraneus Forel. Sexuals of A. ameliae are substantially smaller than those from host species. Parasite queens laid significantly less worker eggs than host queens and inhibit sexual production of the host. The sex ratio of parasite species is highly female biased. Interestingly, we have observed parasite coupling on the laboratory, inside the nests and in the ground, opening the possibility to use controlled mating to study genetic approaches of parasitism in the ants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.