In this paper, a bidirectional diode containing multilevel inverter is introduced to reduce the number of switching elements especially in the case of a high number of output voltage levels. In comparison with classic and recently introduced symmetrical topologies, which are trying to reduce the switch count, this topology has a lower number of semiconductor switches in the same number of output voltage levels. This makes the proposed inverter to be a suitable choice for medium voltage applications like renewable energy applications as well as medium voltage electric drives. Moreover, it can be used in a cascaded configuration for high voltage levels. To depict the performance of the proposed structure, a comprehensive comparison is made between this topology and classic and recently proposed symmetric topologies in terms of switch and gate driver count, power losses, and cost. The performance of the proposed symmetrical 11-level converter is analyzed and simulated in MATLAB/Simulink for both PWM and selective harmonic elimination switching methods. Not only the results are desirable but also the experimental results of laboratory prototype validate the simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.