Congestion in dense traffic networks is a prominent obstacle towards realizing the performance requirements of 5G new radio. Since traditional adaptive traffic signal control cannot resolve this type of congestion, realizing context in the network and adapting resource allocation based on realtime parameters is an attractive approach. This article proposes a radio resource management solution for congestion avoidance on the access side of an integrated access and backhaul (IAB) network using deep reinforcement learning (DRL). The objective of this article is to obtain an optimal policy under which the transmission throughput of all UEs is maximized under the dictates of environmental pressures such as traffic load and transmission power. Here, the resource management problem was converted into a constrained problem using Markov decision processes and dynamic power management, where a deep neural network was trained for optimal power allocation. By initializing a power control parameter, θ t , with zero-mean normal distribution, the DRL algorithm adopts a learning policy that aims to achieve logical allocation of resources by placing more emphasis on congestion control and user satisfaction. The performance of the proposed DRL algorithm was evaluated using two learning schemes, i.e., individual learning and nearest neighbor cooperative learning, and this was compared with the performance of a baseline algorithm. The simulation results indicate that the proposed algorithms give better overall performance when compared to the baseline algorithm. From the simulation results, there is a subtle, but critically important insight that brings into focus the fundamental connection between learning rate and the two proposed algorithms. The nearest neighbor cooperative learning algorithm is suitable for IAB networks because its throughput has a good correlation with the congestion rate.INDEX TERMS Congestion control, deep reinforcement learning, integrated access and backhaul, millimeter wave, nearest neighbor, resource allocation.
Challenges such as backhaul availability and backhaul scalability have continued to outweigh the progress of integrated access and backhaul (IAB) networks that enable multi-hop backhauling in 5G networks. These challenges, which are predominant in poor wireless channel conditions such as foliage, may lead to high energy consumption and packet losses. It is essential that the IAB topology enables efficient traffic flow by minimizing congestion and increasing robustness to backhaul failure. This article proposes a backhaul adaptation scheme that is controlled by the load on the access side of the network. The routing problem is formulated as a constrained Markov decision process and solved using a dual decomposition approach due to the existence of explicit and implicit constraints. A deep reinforcement learning (DRL) strategy that takes advantage of a recursive discrete choice model (RDCM) is then proposed. The incorporation of the RDCM helps to address the challenges of backhaul availability and scalability with the aim to increase robustness to backhaul failure in IAB networks. The advantage of applying the RDCM for this problem is that it incorporates choice aversion from prospect theory and the reward is not the only factor affecting the learning rates, but also the punishment. The performance of the proposed algorithm was compared to that of conventional DRL, i.e., without RDCM, and generative model-based learning (GMBL) algorithms. The simulation results of the proposed approach reveal risk perception by introducing certain biases on alternative choices. For instance, applying cumulative prospect theory in the context of route choices reveal different node behaviors as the learning rate and noise levels are varied. The simulation results showed that the proposed algorithm provides better throughput and delay performance over the two baselines. INDEX TERMSBackhaul, Choice aversion, Constrained Markov decision process, Deep reinforcement learning, Integrated access and backhaul, Recursive discrete choice model, Routing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.