We investigate the influence of the vacuum fluctuations of a background electric field over a charged test particle in the presence of a perfectly reflecting flat wall. A switching function connecting different stages of the system is implemented in such a way that its functional dependence is determined by the ratio between the measuring time and the switching duration. The dispersions of the velocity components of the particle are found to be smooth functions of time, and have maximum magnitudes for a measuring time corresponding to about one round trip of a light signal between the particle and the wall. Typical divergences reported in the literature and linked with an oversimplification in modeling this system are naturally regularized in our approach. Estimates suggest that this sort of manifestation of quantum vacuum fluctuations over the motion of the particle could be tested in laboratories.
The Brownian motion of a test particle interacting with a quantum scalar field in the presence of a perfectly reflecting boundary is studied in (1 + 1)-dimensional flat spacetime. Particularly, the expressions for dispersions in velocity and position of the particle are explicitly derived and their behaviors examined. The results are similar to those corresponding to an electric charge interacting with a quantum electromagnetic field near a reflecting plane boundary, mainly regarding the divergent behavior of the dispersions at the origin (where the boundary is placed), and at the time interval corresponding to a round trip of a light pulse between the particle and the boundary.We close by addressing some effects of allowing the position of the particle to fluctuate.
The contribution from quantum vacuum fluctuations of a real massless scalar field to the motion of a test particle that interacts with the field in the presence of a perfectly reflecting flat boundary is here investigated. There is no quantum induced dispersions on the motion of the particle when it is alone in the empty space. However, when a reflecting wall is introduced, dispersions occur with magnitude dependent on how fast the system evolves between the two scenarios. A possible way of implementing this process would be by means of an idealized sudden switching, for which the transition occurs instantaneously. Although the sudden process is a simple and mathematically convenient idealization it brings some divergences to the results, particularly at a time corresponding to a round trip of a light signal between the particle and the wall. It is shown that the use of smooth switching functions, besides regularizing such divergences, enables us to better understand the behavior of the quantum dispersions induced on the motion of the particle. Furthermore, the action of modifying the vacuum state of the system leads to a change in the particle energy that depends on how fast the transition between these states is implemented. Possible implications of these results to the similar case of an electric charge near a perfectly conducting wall are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.