Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.
Oxidative stress and mitochondrial damage are implicated in the evolution of neurodegenerative diseases. Increased oxidative damage in specific brain regions during aging might render the brain susceptible to degeneration. Previously, we demonstrated increased oxidative damage and lowered antioxidant function in substantia nigra during aging making it vulnerable to degeneration associated with Parkinson's disease. To understand whether aging contributes to the vulnerability of brain regions in Alzheimer's disease, we assessed the oxidant and antioxidant markers, glutathione (GSH) metabolic enzymes, glial fibrillary acidic protein (GFAP) expression and mitochondrial complex I (CI) activity in hippocampus (HC) and frontal cortex (FC) compared with cerebellum (CB) in human brains with increasing age (0.01-80 years). We observed significant increase in protein oxidation (HC: p = 0.01; FC: p = 0.0002) and protein nitration (HC: p = 0.001; FC: p = 0.02) and increased GFAP expression (HC: p = 0.03; FC: p = 0.001) with a decreasing trend in CI activity in HC and FC compared to CB with increasing age. These changes were associated with a decrease in antioxidant enzyme activities, such as superoxide dismutase (HC: p = 0.005), catalase (HC: p = 0.02), thioredoxin reductase (FC: p = 0.04), GSH reductase (GR) (HC: p = 0.005), glutathione-s-transferase (HC: p = 0.0001; FC: p = 0.03) and GSH (HC: p = 0.01) with age. However, these parameters were relatively unaltered in CB. We suggest that the regions HC and FC are subjected to widespread oxidative stress, loss of antioxidant function and enhanced GFAP expression during aging which might make them more susceptible to deranged physiology and selective neuronal degeneration.
Dopaminergic neurons die in Parkinson's disease (PD) due to oxidative stress and mitochondrial dysfunction in the substantia nigra (SN). We evaluated if oxidative stress occurs in other brain regions like the caudate nucleus (CD), putamen (Put) and frontal cortex (FC) in human postmortem PD brains (n = 6). While protein oxidation was elevated only in CD (P < 0.05), lipid peroxidation was increased only in FC (P < 0.05) and protein nitration was unchanged in PD compared to controls. Interestingly, mitochondrial complex I (CI) activity was unaffected in PD compared to controls. There was a 3-5 fold increase in the total glutathione (GSH) levels in the three regions (P < 0.01 in FC and CD; P < 0.05 in Put) but activities of antioxidant enzymes catalase, superoxide dismutase, glutathione reductase and glutathione-s-tranferase were not increased. Total GSH levels were elevated in these areas because of decreased activity of gamma glutamyl transpeptidase (γ-GT) (P < 0.05) activity suggesting a decreased breakdown of GSH. There was an increase in expression of glial fibrillary acidic protein (GFAP) (P < 0.001 in FC; P < 0.05 in CD) and glutathione peroxidase (P < 0.05 in CD and Put) activity due to proliferation of astrocytes. We suggest that increased GSH and astrocytic proliferation protects non-SN brain regions from oxidative and mitochondrial damage in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.