Vanilla extract was prepared by extraction of cured vanilla beans with aqueous ethyl alcohol (60%). The extract was profiled by HPLC, wherein major compounds, viz., vanillic acid, 4-hydroxybenzyl alcohol, 4-hydroxy-3-methoxybenzyl alcohol, 4-hydroxybenzaldehyde and vanillin, could be identified and separated. Extract and pure standard compounds were screened for antioxidant activity using beta-carotene-linoleate and DPPH in vitro model systems. At a concentration of 200 ppm, the extract showed 26% and 43% of antioxidant activity by beta-carotene-linoleate and DPPH methods, respectively, in comparison to corresponding values of 93% and 92% for BHA. Interestingly, 4-hydroxy-3-methoxybenzyl alcohol and 4-hydroxybenzyl alcohol exhibited antioxidant activity of 65% and 45% by beta-carotene-linoleate method and 90% and 50% by DPPH methods, respectively. In contrast, pure vanillin exhibited much lower antioxidant activity. The present study points toward the potential use of vanilla extract components as antioxidants for food preservation and in health supplements as nutraceuticals.
The lignocellulosic coffee by-products such as coffee pulp, coffee cherry husk, silver skin, and spent coffee were evaluated for their efficacy as a sole carbon sources for the production of xylanase in solid-state fermentation using Penicillium sp. CFR 303. Among the residues, coffee cherry husk was observed to produce maximum xylanase activity of 9,475 U/g. The process parameters such as moisture (50%), pH (5.0), temperature (30°C), particle size (1.5 mm), inoculum size (20%), fermentation time (5 days), carbon source (xylose), and nitrogen source (peptone) were optimized and the enzyme activity was in the range of 19,560-20,388 U/g. The enzyme production was further improved to 23,494 U/g with steam as a pre-treatment. The extracellular xylanase from the fungal source was purified to homogeneity from culture supernatant by ammonium sulfate fractionation, DE32-cellulose with a recovery yield of 25.5%. It appeared as a single band on SDS-PAGE gel with a molecular mass of approximately 27 kDa. It had optimum parameters of 50°C temperature, pH 5.0, K m 5.6 mg/mL, and V max 925 μmol mg −1 min −1 with brichwood xylan as a substrate. The crude enzyme hydrolysed lignocellulosic substrate as well as industrial pulp. Production of xylanase utilizing coffee by-products constitutes a renewable resource and is reported for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.