Introduction:For the real-time clinical utilization of curcumin (an ayurvedic natural product) to treat breast cancer, its dissolution, rate limited solubility, poor tissue absorption, and extensive in vivo metabolism that leads to its poor systemic bioavailability should be overcome. A polymer-based nanoparticle formulation using bovine serum albumin can increase its aqueous solubility and can achieve protected, sustained, and targeted therapy in breast cancer.Materials and Methods:Desolvation technique was optimized for the preparation of albumin nanoparticles. Particle size, drug release, encapsulation efficiency, drug polymer interaction were the in vitro properties that were determined. Cell culture studies, in vivo pharmacokinetics in rats were used for biological characterization of the formulation.Results:The formulations were successfully prepared using 1:1, 1:2, 1:3, 1:4 drug: polymer ratios and the percent entrapment was found to be 74.76%, 91.01%, 85.36%, 86.42%, respectively, and particle size determined by zetasizer was found to be 225.1, 223.5, 226.3, 228.7 nm, respectively, and in vitro release was sustained for at least one month with drug release of 75.74%, 65.97%, 64.42%, 54%, respectively. The dissolution rate and aqueous solubility of curcumin was enhanced with this formulation. Fourier transform infrared spectroscopy (FTIR) studies demonstrated that the drug was not changed in the formulation during the fabrication process. The proliferation assays in MDA-MB-231 tumor cell lines indicated more effectiveness of the formulation compared to its solution form. In rats, albumin nanoparticles sustained drug release, demonstrated more bioavailability, improved pharmacokinetic properties, and enhanced tissue targetability of the drug.Conclusions:An effective curcumin-albumin nanoparticle formulation was successfully developed using a desolvation technique.
Objective:The objective of the present investigation was to prepare colon targeted curcumin microspheres using Eudragit S100 and evaluate the same for in vitro/in vivo properties.Materials and Methods:A “O/O solvent evaporation” technique was used in the preparation of microspheres. The influence of various process variables including stirring speed, drug:polymer ratio and percentage of emulsifier on the fabrication were investigated and the formulation was optimized. Prepared microspheres were evaluated for in vitro and in vivo properties. Surface morphology, particle size, percentage drug entrapment, percentage yield, drug polymer interaction, in vitro drug release in simulated gastrointestinal transit conditions and stability were the in vitro parameters investigated. Using an optimized formulation, drug release into the systemic circulation and organ distribution were investigated as in vivo parameters. In vivo parameters were estimated in male albino rats.Results:Curcumin microspheres of Eudragit S100 were successfully prepared using o/o solvent evaporation method. Microspheres prepared using 1:2 drug:polymer ratio, with a stirring speed of 1000 rpm, and using 1.0% w/v concentration of emulsifying agent was selected as an optimized formulation. The release studies with optimized formulation demonstrated that aqueous solubility of curcumin was enhanced by 8 times with the formulation. FTIR studies demonstrated no change in drug characteristics upon microsphere fabrication. The enhancement in solubility is thus due to the increase in the surface area of the drug substance and not due to a change of drug to a different physical state. This was further confirmed by scanning electron microsphere pictures. Drug release followed Korsmeyer and Peppas release model. Accelerated stability studies indicated that the drug is stable in the formulation for a period of atleast 14 weeks at room temperature. In vivo studies demonstrated a sustained drug release into the systemic circulation after oral administration of the formulation. Further, colon target was affectively achieved using the optimized formulation. Eudragit microspheres delivered most of their drug load (79.0%) to the colon, whereas with plain drug suspension only 28.0% of the total dose reached the target site.Conclusion:This study successfully developed curcumin microspheres that can be used effectively in the treatment of the colon cancer.
Saussurea lappa Clarke (Compositae), is commonly known as Kushta. In Ayurvedha, it is mentioned that the aqueous extract of the root S. lappa was used for treatment of angina pectoris. The present study was designed to investigate the cardioprotective effect of aqueous extract of root of S. lappa against isoproterenol induced myocardial injury. Myocardial injury in rat was induced by the administration of isoproterenol at a dose of 85 mg/kg, i.p., The rats were pretreated with the aqueous extract of S. lappa (AESL) in three different doses (100, 200 and 300 mg/kg, p.o.) through the oral route. Isoproterenol alone-treated rats showed increased serum concentration of lactate dehydrogenase (LDH), creatinine kinase (CK), and aspartate transaminase (AST), increased myocardial thiobarbituric acid reactive substances (TBARS) level, and decreased myocardial glutathione (GSH) level due to myocardial damage produced by isoproterenol. This is further conformed by histopathological changes. Chronic oral administration of AESL in three different doses significantly restored the level of myocardial LDH, CK, AST, TBARS, and GSH. The extract effect was compared with the reference standard α-tocopherol which also offered similar protection in biochemical and histopathological changes. The overall beneficial effect which was observed with the dose of 200 mg/kg indicated that AESL produced significant dose-dependent activity against isoproterenol induced myocardial injury.
Submission of an original paper with copyright agreement and authorship responsibility.I (corresponding author) certify that I have participated sufficiently in the conception and design of this work and the analysis of the data (wherever applicable), as well as the writing of the manuscript, to take public responsibility for it. I believe the manuscript represents valid work. I have reviewed the final version of the manuscript and approve it for publication. Neither has the manuscript nor one with substantially similar content under my authorship been published nor is being considered for publication elsewhere, except as described in an attachment. Furthermore I attest that I shall produce the data upon which the manuscript is based for examination by the editors or their assignees, if requested.Thanking you.
The objective of the current research work is to investigate the in-vitro anti-bacterial and anthelmintic activity.The combined tri-herbal methanolic extract made up of equal quantities of leaves of Moringa oleifera, seeds of Terminalia chebula, and fresh bulbs of Allium sativum was evaluated for its in-vitro antibacterial and anthelmintic activity and was compared with its individual methanolic extracts of Terminalia chebula. The anti-bacterial activity was evaluated against gram neagative and gram positive bacteria. Streptomycin was used as a standard drug. The Anthelmintic activity was evaluated against Pheretima posthuma. Albendazole was used as a standard drug. The experimental results showed that triherbal methanolic plant extracts possess better activity on both microorganisms and earthworms. The combined activity of Moringa oleifera, Terminalia chebula and Allium sativum has been reported for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.