Liposomes have been widely used as a drug delivery vector. One way to further improve its therapeutic efficacy is to increase the cell entry efficiency. Covalent conjugation with cell-penetrating peptides (CPPs) and other types of ligands has been the mainstream strategy to tackle this issue. Although efficient, it requires additional chemical modifications on liposomes, which is undesirable for clinical translation. Our previous study showed that the transportan (TP) peptide, an amphiphilic CPP, was able to increase the cellular uptake of co-administered, but not covalently coupled, metallic nanoparticles (NPs). Termed bystander uptake, this process represents a simpler method to increase the cell entry of NPs without chemical modifications. Here, we extended our efforts to liposomes. Our results showed that co-administration with the TP peptide improved the internalization of liposome into a variety of cell lines in vitro. This effect was also observed in primary cells, ex vivo tumor slices, and in vivo tumor tissues. On the other hand, this peptide-assisted liposome internalization did not apply to cationic CPPs, which were the main inducers for bystander uptake in previous studies. We also found that TP-assisted bystander uptake of liposome is receptor dependent, and its activity is more sensitive to the inhibitors of the macropinocytosis pathway, underlining the potential cell entry mechanism. Overall, our study provides a simple strategy based on TP co-administration to increase the cell entry of liposomes, which may open up new avenues to apply TP peptides in nanotherapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.