Vegetation mapping provides important information for understanding ecological condition through calculation of vegetation density. It based on vegetation indices developed through algorithms of a mathematical model within the visible and near-infrared reflectance bands. The index is an estimate of either leaf density per species or vegetation types, respectively. This study aimed to evaluate those indices and find the best algorithm using Sentinel-2 satellite image. Twenty four algorithms of vegetation indices were analyzed for mangrove density mapping, i.e., BR, GNDVI BR, GR, SAVI, MSAVI, NDRE, NDVI, NDVI2, NDWI, NNIP, PSRI, RR, RVI, VIRE, SVI, VIRRE, MTV1, MTVI2, RDVI, VARI, VI green, MSR, and TVI. During pre-processing stage, a digital number of a Sentinel-2 image was converted into radiance and reflectance value. The analysis resulted in three algorithms that provide the highest accuracy, i.e., NDVI (normalized difference vegetation indices) with exponential regression approach, RVI (Ratio Vegetation indices) with the exponential approach and NDVI (normalized difference vegetation indices) with a polynomial approach. The mangrove biomass spatial modeling NDVI with exponential regression approach (RMSE = 89 kg) showed the average of each pixel (10x10m) was 0.97 ton / 100 m2. Total mangrove biomass for above ground and underground vegetation in the study area was 22,365.6 tons. Sentinel-2 satellite image may best use one of those three algorithms, especially applied for mangrove vegetation.
Sungai Brantas merupakan yang terpanjang di Propinsi Jawa Timur. Air sungai ini salah satunya dimanfaatkan sebagai sumberdaya untuk kegiatan perikanan budidaya di Punten. Disisi lain berbagai aktivitas masyarakat sekitar Sungai Brantas diduga berkontribusi pada penurunan kualitas air. Oleh karena itu studi ilmiah yang sistematis perlu dilakukan untuk menjawabnya. Pada bagian awal, diambil Sungai Brantas di Kecamatan Bumiaji yang termasuk dalam bagian hulu sebagai studi kasus. Dari studi ini bertujuan untuk mengetahui kualitas air di Sub-DAS Brantas tersebut menggunakan analisis STORET, kemudian untuk mengetahui pengaruh tata guna lahan (landuse) terhadap kualitas air dengan analisis spasial menggunakan perangkat lunak SIG. Hasil analisis STORET menunjukkan bahwa mutu air pada seluruh stasiun pengamatan tergolong cemar sedang dengan parameter yang melebihi baku mutu yaitu TSS, amonia dan total fosfat. Kemudian analisis SIG menghasilkan peta distribusi kualitas air dan diketahui bahwa tata guna lahan berpengaruh terhadap kualitas air. Peta distribusi kualitas air ini berfungsi untuk mengetahui daerah yang terjadi penurunan kualitas air dan dapat digunakan untuk menyusun rekomendasi kegiatan manajemen sumberdaya perairan untuk budidaya perikanan yang berkelanjutan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.