The S22 test set of interaction energies for small model complexes [Phys. Chem. Chem. Phys. 8, 1985 (2006)] has been very valuable for benchmarking new and existing methods for noncovalent interactions. However, the basis sets utilized to compute the CCSD(T) interaction energies for some of the dimers are insufficient to obtain converged results. Here we consistently extrapolate all CCSD(T)/complete basis set (CBS) interaction energies using larger basis sets for the CCSD(T) component of the computation. The revised values, which we designate S22A, represent the most accurate results to date for this set of dimers. The new values appear to be within a few hundredths of 1 kcal mol(-1) of the true CCSD(T)/CBS limit at the given geometries, but the former S22 values are off by as much as 0.6 kcal mol(-1) compared to the revised values. Because some of the most promising methods for noncovalent interactions are already achieving this level of agreement (or better) compared to the S22 data, more accurate benchmark values would clearly be helpful. The MP2, SCS-MP2, SCS-CCSD, SCS(MI)-MP2, and B2PLYP-D methods have been tested against the more accurate benchmark set. The B2PLYP-D method outperforms all other methods tested here, with a mean average deviation of only 0.12 kcal mol(-1). However, the consistent, slight underestimation of the interaction energies computed by the SCS-CCSD method (an overall mean absolute deviation and mean deviation of 0.24 and -0.23 kcal mol(-1), respectively) suggests that the SCS-CCSD method has the potential to become even more accurate with a reoptimization of its parameters for noncovalent interactions.
The hole-vibrational coupling is reported for anthracene, tetracene, and pentacene on the basis of a joint experimental and theoretical study of ionization spectra using high-resolution gas-phase photoelectron spectroscopy and first-principles correlated quantum-mechanical calculations. The hole-vibrational coupling is found to be significantly smaller than the electron-vibrational coupling in the case of these oligomers; however, both quantities are predicted to converge to the same value when increasing the chain length.
The reorganization energy in pentacene is reported on the basis of a joint experimental and theoretical study of pentacene ionization using high-resolution gas-phase photoelectron spectroscopy, semiempirical intermediate neglect of differential overlap calculations, and first-principles correlated quantum-mechanical calculations at MP2 and density functional theory levels. The reorganization energy upon positive ionization of pentacene is determined both experimentally and theoretically to be remarkably low. This is one key element that allows one to rationalize the extremely high hole mobilities recently measured in pentacene single crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.