Abstract:In the optimal design of a modern gun barrel, there are some aspects to be considered. One of the main factor is internal ballistic which consist of pressure-time, pressure-distance, velocity-time and distance-time curves. In this paper, a simple analytical solution for the plastic stress of an internally pressurized open-ended thick-walled cylinder made of hardening steel which is the closest model to gun barrel is obtained in perfectly plastic and plane stress condition by using energy method and the yield criterion of Von Mises and adding rifle grooves and choosing stress components as basic unknowns and ballistic pressure equation as known. Then results of analytical solution are compared to a numerical model and verified a very well and reliable accuracy. So the resultant can be used easily in calculation of radial expansion velocity and compressive pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.