Cavitation dynamics continue to pose a significant risk in the development and operation of launch vehicle (LV) propulsion systems. In addition to generating unsteady loads that can directly damage turbopump hardware, cavitation dynamics often couple with LV fluid feed systems, producing system wide POGO instability that can cause catastrophic failures. Despite its importance, the current understanding of cavitation dynamics, and especially pump transfer matrices, is limited. Given the relatively sparse amount of inducer transfer matrix data available, there is a critical need for more in-depth characterization of the cavitation dynamics in turbopump inducers to avoid POGO instability. This paper defines and validates a new reduced-order approach to infer key parameters such as cavitation compliance, K, and mass flow gain factor, M, from simple, single sensor unsteady pressure measurements during inducer inlet pressure ramps. The utility of this approach is demonstrated for a range of inducer geometries reported in the literature. The results are in agreement with experimental data and the paper provides a new capability supporting the assessment of launch vehicle POGO instability
Cavitation dynamics continue to pose a significant risk in the development and operation of launch vehicle (LV) propulsion systems. In addition to generating unsteady loads that can directly damage turbopump hardware, cavitation dynamics often couple with LV fluid feed systems, producing system wide POGO instability that can cause catastrophic failures. Despite its importance, the current understanding of cavitation dynamics, and especially pump transfer matrices, is limited. Given the relatively sparse amount of inducer transfer matrix data available, there is a critical need for more in-depth characterization of the cavitation dynamics in turbopump inducers to avoid POGO instability. This paper defines and validates a new reduced-order approach to infer key parameters such as cavitation compliance, K, and mass flow gain factor, M, from simple, single sensor unsteady pressure measurements during inducer inlet pressure ramps. The utility of this approach is demonstrated for a range of inducer geometries reported in the literature. The results are in agreement with experimental data and the paper provides a new capability supporting the assessment of launch vehicle POGO instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.