The adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II), ions from aqueous solutions by Cucumis melo peel-activated carbon was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto CMAC was analyzed with Elovich, intra-particle diffusion rate equations and pseudo-first-order model. The rate constant of Elovich and intra-particle diffusion on CMAC increased in the sequence of Cr(VI) > Ni(II) > Cd(II) > Pb(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-first-order model compared to the second-order Lagergren's model with R 2 > 0.957. The maximum adsorption of metal ions onto the CMAC was found to be 97.95% for Chromium(VI), 98.78% for Ni(II), 98.55% for Pb(II) and 97.96% for Cd(II) at CMAC dose of 250 mg. The adsorption capacities followed the sequence Ni(II) ≈ Pb(II) > Cr(VI) ≈ Cd(II) and Ni(II) > Pb(II) > Cd(II) > Cr(VI). The optimum adsorption conditions selected were adsorbent dosage of 250 mg, pH of 3.0 for Cr(VI) and 6.0 for Ni(II), Cd(II) and Pb(II), adsorption concentration of 250 mg/L and contact time of 180.
The selective removal of Pb 2+ ions by chemically modified cellulose hybrid materials have received great consideration because of their superior adsorption capacities as various chemicals, such as mineral and organic acids, bases, oxidizing agents, and organic compounds, have been used for modifications. This work is to synthesize chemically modified cellulose and examine its adsorption capacity towards lead ions from the effluent water by the adsorption studies like pH, contact time, the dosage of the adsorbent, metal ion concentration, temperature and desorption of the adsorbent material.
Carbon nanotubes are promising to revolutionize several fields in material science and are suggested to open the way into nanotechnology. These circular rodshaped carbon nanostructures have novel characteristics that lead them to being potentially beneficial in many applications in nanoscience and nanotechnology. Their precise surface place, stiffness, power, and resilience have brought about lots of exhilaration in various areas. Nanotubes are categorized as single-walled nanotubes, double-walled nanotubes, and multi-walled nanotube. Various techniques have been evolved to produce nanotubes in bulk, including of arc discharge, laser ablation, chemical vapor deposition, electrolysis, and ball milling. Since their first observation nearly 20 years ago by Iijima, carbon nanotubes have been the focus of considerable research. Numerous researchers have reported remarkable physical and chemical properties for this new form of advanced carbon nanomaterials. Carbon nanotubes offer tremendous opportunities for the development of new material systems. This paper provides a concise report on recent advances in carbon nanotubes and their potential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.