Topological insulators are candidates to open up a novel route in spin based electronics. Different to traditional ferromagnetic materials, where the carrier spin-polarization and magnetization are based on the exchange interaction, the spin properties in topological insulators are based on the coupling of spin- and orbit interaction connected to its momentum. Specific ways to control the spin-polarization with light have been demonstrated: the energy momentum landscape of the Dirac cone provides spin-momentum locking of the charge current and its spin. We investigate a spin-related signal present only during the laser excitation studying real and imaginary part of the complex Kerr angle by disentangling spin and lattice contributions. This coherent signal is only present at the time of the pump-pulses’ light field and can be described in terms of a Raman coherence time. The Raman transition involves states at the bottom edge of the conduction band. We demonstrate a coherent femtosecond control of spin-polarization for electronic states at around the Dirac cone.
Spatially resolved measurements of the magnetization dynamics on a thin CoFeB film induced by an intense laser pump-pulse reveal that the frequencies of resulting spin-wave modes depend strongly on the distance to the pump center. This can be attributed to a laser generated temperature profile. We determine a shift of 0.5 GHz in the spin-wave frequency due to the spatial thermal profile induced by the femtosecond pump pulse that persists for up to one nanosecond. Similar experiments are presented for a magnonic crystal composed of a CoFeB-film based antidot lattice with a Damon Eshbach mode at the Brillouin zone boundary and its consequences are discussed.
We present a study of the tunnel magneto-Seebeck (TMS) 1 effect in MgO based magnetic tunnel junctions (MTJs). The electrodes consist of CoFeB with inplane magnetic anisotropy. The temperature gradients which generate a voltage across the MTJs layer stack are created using laser heating. Using this method, the temperature can be controlled on the micrometer length scale: here, we investigate, how both, the TMS voltage and the TMS effect, depend on the size, position and intensity of the applied laser spot. For this study, a large variety of different temperature distributions was created across the junction. We recorded twodimensional maps of voltages generated by heating in dependence of the laser spot position and the corresponding calculated TMS values. The voltages change in value and sign, from large positive values when heating the MTJ directly in the centre to small values when heating the junction on the edges and even small negative values when heating the sample away from the junction. Those zero crossings lead to very high calculated TMS ratios. Our systematic analysis shows, that the distribution of the temperature gradient is essential, to achieve high voltage signals and reasonable resulting TMS ratios. Furthermore, artefacts on the edges produce misleading results, but also open up further possibilities of more complex heating scenarios for spincaloritronics in spintronic devices.
Nanoscale multilayer thin films of W and PC (Polycarbonate) show, due to the great difference of the components' characteristics, fascinating properties for a variety of possible applications and provide an interesting research field, but are hard to fabricate with low layer thicknesses. Because of the great acoustic mismatch between the two materials, such nanoscale structures are promising candidates for new phononic materials, where phonon propagation is strongly reduced. In this article we show for the first time that W/PC-multilayers can indeed be grown with high quality by pulsed laser deposition. We analyzed the polymer properties depending on the laser fluence used for deposition, which enabled us to find best experimental conditions for the fabrication of high-acoustic-mismatch W/PC multilayers. The multilayers were analyzed by fs pump-probe spectroscopy showing that phonon dynamics on the ps time-scale can strongly be tailored by structural design. While already periodic multilayers exhibit strong phonon localization, especially aperiodic structures present outstandingly low phonon propagation properties making such 1D-layered W/PC nano-structures interesting for new phononic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.