Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top-down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.