Soil saturated hydraulic conductivity is considered one of the physical soil properties that is very important in modeling of water movement and environmental studies. This study aimed to compare the performance of Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) in neural networks for estimation of the soil saturated hydraulic conductivity. For this, the data of 27 drilled cased borehole permeameter with three kinds of geometry water flow through the soils and the soil texture properties were used as the input parameters for models. The effectiveness of neural networks to estimate the soil saturated hydraulic conductivity were calculated and compared based on mean squared error (MSE), root mean squared error (RMSE) and coefficient determination (R2). According to the above indicators, for all three types of drilled cased borehole permeameter surveyed in this study, the results show MLP neural networks had better performance than RBF neural networks in estimation of the soil saturated hydraulic conductivity and for wells with the horizontal, vertical and horizontal-vertical flow, which the amount of coefficient determination were respectively for all of them 0.94, 0.97 and 0.85.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.