SUMMARY1. The influences of ambient temperature (Ta) on the thermoregulatory effector activities and the body temperature (Tb) of intraventricular injections into the sheep, goat and rabbit of 5-hydroxytryptamine (5-HT), noradrenaline (NA), acetylcholine (ACh), carbachol and eserine, have been interpreted in terms of a simple neuronal model of the pathways between thermosensors and thermoregulatory effectors.2. In all three species 5-HT in minimal doses caused a rise in respiratory frequency (RF) and a fall in Tb at high Ta, and a reduction in EMG activity and a fall in Tb at low Ta. These effects could be interpreted as those of an excitatory transmitter acting on the warm receptor-heat loss pathway. 3. In all three species NA caused a reduction in RF and a rise in Tb at high Ta, and a reduction in EMG activity and a fall in Tb at low Ta. These effects are interpreted as those of an inhibitory transmitter acting both on the warm sensor-heat loss pathways and on the cold sensor-heat production pathway.4. The effects of ACh and the cholinomimetic substances carbachol and eserine are complex and more difficult to interpret. In small doses the effects on the sheep and goat are those of an excitatory transmitter on the cold sensor-heat production pathway. There was an increase in EMG activity and a rise in Tb at low Ta, and a reduction in RF and a rise in Tb at high Ta. At higher dose levels in the goat and at all dose levels in the
In mammals and birds, all oxygen used (VO2) must pass through the lungs; hence, some degree of coupling between VO2 and pulmonary ventilation (VE) is highly predictable. Nevertheless, VE is also involved with CO2 elimination, a task that is often in conflict with the convection of O2. In hot or cold conditions, the relationship between VE and VO2 includes the participation of the respiratory apparatus to the control of body temperature and water balance. Some compromise among these tasks is achieved through changes in breathing pattern, uncoupling changes in alveolar ventilation from VE. This article examines primarily the relationship between VE and VO2 under thermal stimuli. In the process, it considers how the relationship is influenced by hypoxia, hypercapnia or changes in metabolic level. The shuffling of tasks in emergency situations illustrates that the constraints on VE-VO2 for the protection of blood gases have ample room for flexibility. However, when other priorities do not interfere with the primary goal of gas exchange, VE follows metabolic rate quite closely. The fact that arterial CO2 remains stable when metabolism is changed by the most diverse circumstances (moderate exercise, cold, cold and exercise combined, variations in body size, caloric intake, age, time of the day, hormones, drugs, etc.) makes it unlikely that VE and metabolism are controlled in parallel by the condition responsible for the metabolic change. Rather, some observations support the view that the gaseous component of metabolic rate, probably CO2, may provide the link between the metabolic level and VE.
During surgery under pentobarbital sodium anesthesia, 20 rats had heat exchange devices implanted into their abdominal cavity. After recovery, 14 rats underwent two sets of trials, one in which body core temperature (Tbc) was lowered to 34.5-35.5 degrees C and another in which Tbc was raised to 40.5-41.5 degrees C. Rats breathed air and hypoxic (15, 11, and 7% O2 in N2) and hypercapnic (2, 4, and 6% CO2 in air) gas mixtures. Respiratory responses were measured using a barometric method and compared with data from the same rats breathing the gas mixtures at normal Tbc (37.5-38.5 degrees C) before surgery. The six remaining rats served as controls (Tbc unchanged). Lowering Tbc increased respiration in air, whereas heating had no effect. Hypothermia and severe hypoxia combined to inhibit respiration when compared with breathing air at lowered Tbc or low O2 at normal Tbc. The CO2 response slope became steeper when Tbc was raised, suggesting an increased CO2 sensitivity. Possible sites for the hypothermia-hypoxia interaction and the hyperthermia-hypercapnia interaction are discussed.
Arterial haemoglobin saturation during exercise in healthy young women [eight subjects mean (SEM) age 20.8 (1.8) years] was measured to confirm the theory that young women experience exercise-induced arterial hypoxaemia (EIAH) at a lower relative percentage of maximal oxygen uptake (VO(2max)) than has been documented in their male counterparts. To determine if flow limitation [the percentage of the tidal volume ( V(T)) that met or exceeded the boundary established by multiple maximal expiratory manoeuvres] and/or post-exercise lung diffusing capacity are linked to EIAH in women, and to investigate the influence of exercise intensity and duration on post-exercise carbon monoxide lung diffusing capacity ( D(L, CO)), these parameters were measured during and after three exercise tests (incremental test until exhaustion, 5 km run and 5 km run with sprint). All subjects experienced physiologically significant EIAH (a fall of more than 3% in oxygen saturation of arterial blood from levels at rest) and seven subjects experienced flow limitation during the VO(2max) protocol [mean (SD) 12.2 (8.8)% of V(T)]. Even though there was no significant relationship between aerobic capacity and the degree of flow limitation ( r=0.33, P>0.05), the flow limitation was related to absolute ventilation in the subjects studied ( r=0.82, P<0.05). There was no significant relationship between decrements in post exercise D(L, CO) and EIAH ( r=0.05, P>0.05), however there was a strong correlation between the extent of flow limitation (% of V(T)) and EIAH ( r=0.71). Significant decreases in D(L, CO) lasted for up to 16 h after each of the exercise tests ( P<0.05) and lasted for a further 8 h after the maximal test ( P<0.05). Exercise intensity was the main contributing factor to the observed decreases in post-exercise D(L, CO) with the percentage of VO(2max) attained during the various tests being significantly related to the fall in D(L, CO) for 1, 2, 3, 16 and 24 h after exercise ( P<0.05). As the appearance of flow limitation closely coincided with the appearance of EIAH, the results from the present study suggest that flow limitation is a contributing factor to EIAH in women although the exact mechanism remains unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.